Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis

被引:83
作者
Peng Xianjun [1 ,2 ]
Ma Xingyong [1 ,2 ]
Fan Weihong [1 ]
Su Man [1 ,2 ]
Cheng Liqin [1 ]
Alam, Iftekhar [3 ]
Lee, Byung-Hyun [3 ]
Qi Dongmei [1 ]
Shen Shihua [1 ]
Liu Gongshe [1 ]
机构
[1] Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100093, Peoples R China
[3] Gyeongsang Natl Univ, Div Appl Life Sci, Program BK21, IALS,PMBBRC,Coll Agr, Jinju 660701, South Korea
基金
中国国家自然科学基金;
关键词
Abiotic stress; ABA responsive; S-adenosylmethionine decarboxylase; Spermidine; Spermine; BINDING TRANSCRIPTION FACTOR; RESPONSIVE ELEMENT; LOW-TEMPERATURE; STRESS; DEFOLIATION; ACTIVATORS; PATHWAYS; POACEAE; CLONING; GROWTH;
D O I
10.1007/s00299-011-1058-2
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Dehydration-responsive element-binding (DREB) proteins are important transcription factors in plant stress responses and signal transduction. Based on high-throughput sequencing results, a new cDNA sequence encoding an LcDREB3a transcription factor from the drought-resistant forage grass, Leymus chinensis, was isolated by RACE PCR. Sequence similarity analysis indicates that the gene product is active in the ABA-responsive pathway, and real-time PCR-based expression analysis shows the transcript accumulates in response to a variety of stress treatments. These results indicate that LcDREB3a is involved in both ABA-dependent and -independent signal transduction in the stress-responsive process of L. chinensis. The identity of the gene product as a DREB transcription factor is supported by observations of its nuclear localization when transiently expressed as a GFP fusion in onion epidermal cells. Furthermore, LcDREB3a is able to activate reporter gene expression, and the protein is shown to specifically bind to the conserved DRE element in a yeast one-hybrid assay. The transgenic expression of LcDREB3a in Arabidopsis causes no growth retardation and induces the increased expression of stress tolerance genes compared to control, resulting in improved drought and salt stress tolerance. Thus, LcDREB3a, encoding a stress-inducible DREB transcription factor, could enhance the abiotic stress tolerance of plants.
引用
收藏
页码:1493 / 1502
页数:10
相关论文
共 50 条
  • [31] Enhanced drought and salt tolerance of Arabidopsis thaliana by ectopic expression of the molecular chaperone artemin from Artemia urmiana
    Poormohammad, Zeinab
    Shahrokhi, Sara
    Abedi, Amin
    Sajedi, Reza H.
    Sohani, M. Mehdi
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2024, 33 (03) : 299 - 312
  • [32] Overexpression of NnDREB2, isolated from lotus improves salt tolerance in transgenic Arabidopsis thaliana
    Cheng, Libao
    Hui, Linchong
    Yin, Li
    Li, Shuyan
    Chen, Xuehao
    Li, Liangjun
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (12) : 1 - 12
  • [33] Expression of rice gene OsMSR4 confers decreased ABA sensitivity and improved drought tolerance in Arabidopsis thaliana
    Yin, Xuming
    Huang, Lifang
    Zhang, Xin
    Wang, Manling
    Xu, Guoyun
    Xia, Xinjie
    PLANT GROWTH REGULATION, 2015, 75 (02) : 549 - 556
  • [34] Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana
    Song, Shun
    Xu, Yi
    Huang, Dongmei
    Miao, Hongxia
    Liu, Juhua
    Jia, Caihong
    Hu, Wei
    Valarezo, Ana Valeria
    Xu, Biyu
    Jin, Zhiqiang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 128 : 163 - 169
  • [35] Epichloe endophytes improved Leymus chinensis tolerance to both neutral and alkali salt stresses
    Yin, Lijia
    Wei, Maoying
    Wu, Guanghong
    Ren, Anzhi
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [36] The drnf1 Gene from the Drought-Adapted Cyanobacterium Nostoc flagelliforme Improved Salt Tolerance in Transgenic Synechocystis and Arabidopsis Plant
    Cui, Lijuan
    Liu, Yinghui
    Yang, Yiwen
    Ye, Shuifeng
    Luo, Hongyi
    Qiu, Baosheng
    Gao, Xiang
    GENES, 2018, 9 (09):
  • [37] Polyamine metabolism and biosynthetic gene expression in Arabidopsis thaliana under salt stress
    Bagni, N.
    Ruiz-Carrasco, K.
    Franceschetti, M.
    Fornale, S.
    Fornasiero, R. B.
    Tassoni, A.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2006, 44 (11-12) : 776 - 786
  • [38] The Maize Gene ZmGLYI-8 Confers Salt and Drought Tolerance in Transgenic Arabidopsis Plants
    Yu, Ting
    Dong, Wei
    Hou, Xinwei
    Sun, Aiqing
    Li, Xinzheng
    Yu, Shaowei
    Zhang, Jiedao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (20)
  • [39] The Conringia planisiliqua Alfin-like2 gene enhances drought and salt tolerance in Arabidopsis thaliana
    Zhu, Yanfei
    Chen, Quanjia
    Liu, Xiaodong
    Qu, Yanying
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2021, 33 (04) : 427 - 441
  • [40] Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globulus
    Gamboa, M. C.
    Baltierra, F.
    Leon, G.
    Krauskopf, E.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 73 : 99 - 105