Strong Lewis Acid-Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO2 Electrolytes for a High Rate Capability Li-Metal Battery

被引:99
作者
Xu, Zhong [1 ]
Yang, Tao [1 ]
Chu, Xiang [1 ]
Su, Hai [3 ,4 ]
Wang, Zixing [1 ]
Chen, Ningjun [1 ]
Gu, Bingni [1 ]
Zhang, Hepeng [1 ]
Deng, Weili [1 ]
Zhang, Haitao [1 ]
Yang, Weiqing [1 ,2 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Technol Mat, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, State Key Lab Tract Power, Chengdu 610031, Peoples R China
[3] Tianjin Univ, Key Lab Adv Ceram & Machining Technol, Tianjin Key Lab Composite & Funct Mat, Minist Educ,Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[4] Tianjin Univ, Tianjin Key Lab Mol Optoelect Sci, Tianjin SCI, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state Li-metal battery; ceramic-polymer composite electrolytes; in situ synthesis; ionic conductivity; rate capability; COMPOSITE POLYMER ELECTROLYTES; SOLID-STATE; SILICA NANOSPHERES; LITHIUM; CHALLENGES; PEO; NANOCOMPOSITE; TRANSPORT; OXIDE;
D O I
10.1021/acsami.9b20128
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid-state composite polymer electrolytes (CPEs) usually suffer from intrinsic low ionic conductivity and a solidsolid interface, badly inhibiting their widespread commercial application in all-solid-state Li-metal battery (ASSLMB) energy storage. Herein, a synergetic strategy using strong Lewis acid-base and weak hydrogen bonds was employed for self-assembly in situ construction of three-dimensional (3D) network-structured poly(ethylene oxide) (PEO) and SiO2 CPEs (PEO@SiO2). Ascribed to this synergistically rigid-flexible coupling dynamic strategy, a harmonious incorporation of monodispersed SiO2 nanoparticles into PEO could remarkably reduce crystallinity of PEO, significantly enhancing the ionic conductivity (similar to 1.1 X 10(-4) S cm(-1) at 30 degrees C) and dramatically facilitating solid electrolyte interface stabilization (electrochemical stability window > 4.8 V at 90 degrees C). Moreover, the PEO@SiO2-based ASSLMBs possess excellent rate capability over a wide temperature range (similar to 105 mA h g(-1) under 2 C at 90 degrees C), high temperature cycling capacity (retaining 90 mA h g(-1) after 100 cycles at 90 degrees C), and high specific capacity (146 mA h g(-1) under 0.3 C at 90 degrees C). Unambiguously, these high ionic conductivity CPEs along-with excellent flexibility and safety can be one of the most promising candidates for high-performance ASSLMBs, evidently revealing that this synergistically rigid-flexible coupling dynamic strategy will open up a way to exploit the novel high ionic conductivity solid-state electrolytes.
引用
收藏
页码:10341 / 10349
页数:9
相关论文
共 43 条
[1]   Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries [J].
Angulakshmi, N. ;
Nahm, K. S. ;
Nair, Jijeesh R. ;
Gerbaldi, C. ;
Bongiovanni, R. ;
Penazzi, N. ;
Stephan, A. Manuel .
ELECTROCHIMICA ACTA, 2013, 90 :179-185
[2]   Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains [J].
Araujo, Catarina F. ;
Nolasco, Mariela M. ;
Ribeiro-Claro, Paulo J. A. ;
Rudic, Svemir ;
Silvestre, Armando J. D. ;
Vaz, Pedro D. ;
Sousa, Andreia F. .
MACROMOLECULES, 2018, 51 (09) :3515-3526
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis [J].
Banik, Steven M. ;
Levina, Anna ;
Hyde, Alan M. ;
Jacobsen, Eric N. .
SCIENCE, 2017, 358 (6364) :761-764
[5]   Electrolyte design strategies and research progress for room-temperature sodium-ion batteries [J].
Che, Haiying ;
Chen, Suli ;
Xie, Yingying ;
Wang, Hong ;
Amine, Khalil ;
Liao, Xiao-Zhen ;
Ma, Zi-Feng .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1075-1101
[6]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[7]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[8]   In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries [J].
Duan, Hui ;
Yin, Ya-Xia ;
Zeng, Xian-Xiang ;
Li, Jin-Yi ;
Shi, Ji-Lei ;
Shi, Yang ;
Wen, Rui ;
Guo, Yu-Guo ;
Wan, Li-Jun .
ENERGY STORAGE MATERIALS, 2018, 10 :85-91
[9]   Effects of nanoparticle addition to poly(ε-caprolactone) electrolytes: Crystallinity, conductivity and ambient temperature battery cycling [J].
Eriksson, Therese ;
Mindemark, Jonas ;
Yue, Ma ;
Brandell, Daniel .
ELECTROCHIMICA ACTA, 2019, 300 :489-496
[10]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099