A global Lipschitz continuity result for a domain-dependent Neumann eigenvalue problem for the Laplace operator

被引:7
作者
Lamberti, PD [1 ]
Lanza de Cristoforis, M [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
Neumann eigenvalues and eigenvectors; Laplace operator; domain perturbation; special nonlinear operators;
D O I
10.1016/j.jde.2005.03.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be an open connected subset of R-n of finite measure for which the Poincare-Wirtinger inequality holds. We consider the Neumann eigenvalue problem for the Laplace operator in the open subset phi(Omega) of R-n, where phi is a locally Lipschitz continuous homeomorphism of Omega onto phi(Omega). Then, we show Lipschitz-type inequalities for the reciprocals of the eigenvalues delivered by the Rayleigh quotient. Then, we further assume that the imbedding of the Sobolev space W-1,W-2(Omega) into the space L-2(Omega) is compact, and we prove the same type of inequalities for the projections onto the eigenspaces upon variation of (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 133
页数:25
相关论文
共 6 条
[1]  
BURENKOV V. I., 1998, Sobolev Spaces on Domains
[2]   Spectral stability of the Neumann Laplacian [J].
Burenkov, VI ;
Davies, EB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (02) :485-508
[3]  
Evans L.C., 1998, PARTIAL DIFFERENTIAL
[4]  
LAMBERTI PD, 2005, IN PRESS Z ANAL IHRE, V24
[5]  
Necas J., 1967, Les methodes directes en theorie des equations elliptiques
[6]  
Reshetnyak Y.G., 1989, TRANSLATIONS MATH MO, V73