Maximum genus and girth of graphs

被引:9
|
作者
Huang, YQ [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China
关键词
D O I
10.1016/S0012-365X(98)00152-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a lower bound on the maximum genus of a graph in terms of its girth is established as follows: let G be a simple graph with minimum degree at least three, and let g be the girth of G. Then gamma(M)(G) >= g-2/2(g-1) beta(G) + 1/g-1 except for G = K-4 , where beta(G) denotes the cycle rank of G and K-4 is the complete graph with four vertices. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 50 条
  • [31] Wiener Index, Kirchhoff Index in Graphs with Given Girth and Maximum Degree
    Chen, Hanlin
    Li, Chao
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (03) : 683 - 703
  • [32] The largest Wiener index of unicyclic graphs given girth or maximum degree
    Shang-wang Tan
    Yan Lin
    Journal of Applied Mathematics and Computing, 2017, 53 : 343 - 363
  • [33] The largest Wiener index of unicyclic graphs given girth or maximum degree
    Tan, Shang-wang
    Lin, Yan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) : 343 - 363
  • [34] GIRTH IN GRAPHS
    THOMASSEN, C
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (02) : 129 - 141
  • [35] Nonseparating Independent Sets and Maximum Genus of Graphs
    Chao YANG
    Han REN
    Er-ling WEI
    Acta Mathematicae Applicatae Sinica, 2022, 38 (03) : 719 - 728
  • [36] On the lower bounds for the maximum genus for simple graphs
    Ouyang, Zhangdong
    Wang, Jing
    Huang, Yuanqiu
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (05) : 1235 - 1242
  • [37] A new bound on maximum genus of simple graphs
    Lv, Shengxiang
    Liu, Yanpei
    ARS COMBINATORIA, 2011, 98 : 7 - 14
  • [38] THE MAXIMUM GENUS OF VERTEX-TRANSITIVE GRAPHS
    SKOVIERA, M
    NEDELA, R
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 179 - 186
  • [39] Maximum and minimum toughness of graphs of small genus
    Goddard, W
    Plummer, MD
    Swart, HC
    DISCRETE MATHEMATICS, 1997, 167 : 329 - 339
  • [40] Maximum and minimum toughness of graphs of small genus
    Goddard, Wayne
    Plummer, Michael D.
    Swart, Henda C.
    Discrete Mathematics, 1997, 167-168 : 329 - 339