3-D low numerical dispersion WLP-FDTD method with artificial anisotropy parameters

被引:1
|
作者
Liu, Gui-Ying [1 ]
Ma, Ping [2 ]
Tian, Jing [3 ]
Quan, Jun [4 ]
Chen, Wei-Jun [1 ]
机构
[1] Lingnan Normal Univ, Sch Elect & Elect Engn, Zhanjiang, Peoples R China
[2] Hyperveloc Aerodynam Inst, China Aerodynam Res & Dev Ctr, Mianyang, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu, Peoples R China
[4] Lingnan Normal Univ, Sch Phys Sci & Technol, Zhanjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite difference time domain method;
D O I
10.1049/ell2.12397
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on the weighted Laguerre polynomials (WLPs) and artificial anisotropic (AA) parameters, a 3-D unconditionally stable finite-difference time-domain (FDTD) electromagnetic simulation approach is proposed. The implementation of WLPs in time domain effectively eliminates the time step and AA parameters in spatial difference, resulting in suppressed numerical dispersion error. The monochromatic wave is employed as an example to obtain the numerical dispersion relationship of 3-D AA-WLP-FDTD under AA parameter, in which reduced numerical dispersion error is observed. Compared with the conventional WLP-FDTD technique, this approach demonstrates smaller numerical dispersion error under similar calculation cost.
引用
收藏
页码:179 / 181
页数:3
相关论文
共 50 条
  • [31] Absorbing Boundary Condition for Efficient 2-D WLP-FDTD Method Based on Domain Decomposition Technique
    Xu, Boao
    Yi, Yun
    Chen, Bin
    Luo, Kang
    Zhu, Dawei
    2017 IEEE 5TH INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC-BEIJING), 2017,
  • [32] The simulation of ice anisotropy feature based on 3-D FDTD method
    Wang, Bangbing
    Tian, Gang
    Sun, Bo
    NEAR-SURFACE GEOPHYSICS AND HUMAN ACTIVITY, 2008, : 473 - 476
  • [33] Analysis of Stability and Numerical Dispersion of 3-D HIE-FDTD Method Including Lumped Elements
    Kong Y.-D.
    Chen X.-L.
    Chu Q.-X.
    IEEE Transactions on Antennas and Propagation, 2023, 71 (10) : 8130 - 8142
  • [34] An Efficient 2-D WLP-FDTD Method Utilizing Vertex-Based Domain Decomposition Scheme
    Wei, Xiao-Kun
    Shao, Wei
    Shi, Sheng-Bing
    Wang, Bing-Zhong
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (12) : 769 - 771
  • [35] Modeling of Wave propagation in Thin Graphene Sheets with 3-D ADE-WLP-FDTD Method
    Liu, Ru-Jun
    Chen, Wei-Jun
    Lin, Han
    Long, Shi-Yu
    Shao, Wei
    2018 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT2018), 2018,
  • [36] A COMPREHENSIVE STUDY OF NUMERICAL ANISOTROPY AND DISPERSION IN 3-D TLM MESHES
    BERINI, P
    WU, K
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1995, 43 (05) : 1173 - 1181
  • [37] An Artificial Anisotropy Four-Step HIE-FDTD Method With Lower Numerical Dispersion Error
    Kong, Yong-Dan
    Zhang, Chu-Bin
    Zhang, Hong-Yu
    Chu, Qing-Xin
    IEEE ACCESS, 2020, 8 : 199016 - 199024
  • [38] Numerical Dispersion Analysis for Single Field HIE-FDTD method with Artificial Anisotropic Parameters
    Liang, Qi-Wen
    Chen, Wei-Jun
    Zhu, Qi-Yuan
    IEICE ELECTRONICS EXPRESS, 2023, 20 (12):
  • [39] A finite volumes-based 3-D low dispersion FDTD algorithm
    Hadi, Mohammed F.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (08) : 2287 - 2293
  • [40] Analysis and implementation of 3-D FDTD method based on isotropic dispersion scheme
    Kim, Woo-Tae
    Kim, Hyun
    Koh, Ii-Suek
    Yook, Jong-Gwan
    2007 WORKSHOP ON COMPUTATIONAL ELECTROMAGNETICS IN TIME-DOMAIN, 2007, : 136 - +