3-D low numerical dispersion WLP-FDTD method with artificial anisotropy parameters

被引:1
|
作者
Liu, Gui-Ying [1 ]
Ma, Ping [2 ]
Tian, Jing [3 ]
Quan, Jun [4 ]
Chen, Wei-Jun [1 ]
机构
[1] Lingnan Normal Univ, Sch Elect & Elect Engn, Zhanjiang, Peoples R China
[2] Hyperveloc Aerodynam Inst, China Aerodynam Res & Dev Ctr, Mianyang, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu, Peoples R China
[4] Lingnan Normal Univ, Sch Phys Sci & Technol, Zhanjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite difference time domain method;
D O I
10.1049/ell2.12397
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on the weighted Laguerre polynomials (WLPs) and artificial anisotropic (AA) parameters, a 3-D unconditionally stable finite-difference time-domain (FDTD) electromagnetic simulation approach is proposed. The implementation of WLPs in time domain effectively eliminates the time step and AA parameters in spatial difference, resulting in suppressed numerical dispersion error. The monochromatic wave is employed as an example to obtain the numerical dispersion relationship of 3-D AA-WLP-FDTD under AA parameter, in which reduced numerical dispersion error is observed. Compared with the conventional WLP-FDTD technique, this approach demonstrates smaller numerical dispersion error under similar calculation cost.
引用
收藏
页码:179 / 181
页数:3
相关论文
共 50 条
  • [21] Modeling Thin Graphene Sheets with Efficient 2-D WLP-FDTD Method
    Zhu, Qi-Yuan
    Chen, Wei-Jun
    2017 IEEE SIXTH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2017,
  • [22] Time-Domain Power Distribution Network (PDN) Analysis for 3-D Integrated Circuits Based on WLP-FDTD
    Zhi, Changle
    Dong, Gang
    Zhu, Zhangming
    Yang, Yintang
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2022, 12 (03): : 551 - 561
  • [23] Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method
    Zheng, FH
    Chen, ZZ
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (05) : 1006 - 1009
  • [24] GENETIC ALGORITHM IN REDUCTION OF NUMERICAL DISPERSION OF 3-D ADI-FDTD METHOD
    Zhang Yan L Shanwei Gao Wenjun(School of Electronics and Information Engineering
    JournalofElectronics(China), 2007, (03) : 380 - 383
  • [25] Improvement on the numerical dispersion of 2-D ADI-FDTD with artificial anisotropy
    Zhao, AP
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2004, 14 (06) : 292 - 294
  • [26] A New Efficient Algorithm for the 2D WLP-FDTD Method Based on Domain Decomposition Technique
    Xu, Bo-Ao
    Duan, Yan-Tao
    Chen, Bin
    Yi, Yun
    Luo, Kang
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2016, 2016
  • [27] UPML-ABC of dispersive materials for the unconditionally stable 2-D WLP-FDTD method
    Lu, Feng
    Ma, Yao
    Xiong, Run
    Duan, Yan-Tao
    Su, Li-Yuan
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2015, 48 (04) : 447 - 457
  • [28] A Simple Approximation Formula for Numerical Dispersion Error in 2-D and 3-D FDTD Method
    Sonoda, Jun
    Kaino, Keimei
    Sato, Motoyuki
    IEICE TRANSACTIONS ON ELECTRONICS, 2016, E99C (07): : 793 - 796
  • [29] Low Numerical Dispersion 3-D HIE-FDTD Methods With Weaker Stability Condition
    Ding, Jinchao
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (07): : 1327 - 1331
  • [30] An Unconditionally Stable 2-D Stochastic WLP-FDTD Method for Geometric Uncertainty in Superconducting Transmission Lines
    Li, Yan
    Li, Xiao-Chun
    Yang, Yifan
    Mao, Jun-Fa
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (02)