Weyl group multiple Dirichlet series, Eisenstein series and crystal bases

被引:36
作者
Brubaker, Ben [1 ]
Bump, Daniel [2 ]
Friedberg, Solomon [3 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Boston Coll, Chestnut Hill, MA 02167 USA
基金
美国国家科学基金会;
关键词
WHITTAKER FUNCTIONS; CANONICAL BASES; COMBINATORICS; CHARACTERS; A(R); GLN;
D O I
10.4007/annals.2011.173.2.13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Whittaker coefficients of Borcl Eisenstein series on the metaplectic covers of GL(r+1) can be described as multiple Dirichlet series in r complex variables, whose coefficients are computed by attaching a number-theoretic quantity (a product of Gauss sums) to each vertex in a crystal graph. These Gauss sums depend on "string data" previously introduced in work of Lusztig, Berenstein and Zelevinsky, and Littelmann. These data are the lengths of segments in a path from the given vertex to the vertex of lowest weight, depending on a factorization of the long Weyl group element into simple reflections. The coefficients may also be described as sums over strict Gelfand-Tsetlin patterns. The description is uniform in the degree of the metaplectic cover.
引用
收藏
页码:1081 / 1120
页数:40
相关论文
共 35 条
[1]  
[Anonymous], 1969, ANN SCI ECOLE NORM S
[2]  
Banks WD, 1999, J REINE ANGEW MATH, V507, P131
[3]  
BEINEKE J, 2010, ARXIV10031158
[4]   Canonical bases for the quantum group of type A(r) and piecewise-linear combinatorics [J].
Berenstein, A ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (03) :473-502
[5]   Tensor product multiplicities, canonical bases and totally positive varieties [J].
Berenstein, A ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2001, 143 (01) :77-128
[6]  
Berenstein BK95 Arkady, 1995, Algebra i Analiz, V7, P92
[7]   Weyl group multiple Dirichlet series III:: Eisenstein series and twisted unstable Ar [J].
Brubaker, B. ;
Bump, D. ;
Friedberg, S. ;
Hoffstein, J. .
ANNALS OF MATHEMATICS, 2007, 166 (01) :293-316
[8]  
Brubaker B, 2011, ANN MATH STUD, P1
[9]  
BRUBAKER B, CRYSTALS TYPE B META
[10]  
Brubaker B, 2008, PROG MATH, V258, P1