Chamber behavior of double Hurwitz numbers in genus 0

被引:30
作者
Shadrin, S.
Shapiro, M.
Vainshtein, A. [1 ]
机构
[1] Univ Haifa, Dept Math & Comp Sci, IL-31905 Haifa, Israel
[2] Univ Zurich, Dept Math, CH-8057 Zurich, Switzerland
[3] Syst Res Inst, Dept Math, Moscow 117218, Russia
[4] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
double Hurwitz numbers; piecewise polynomiality; chambers; wall crossing;
D O I
10.1016/j.aim.2007.06.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study double Hurwitz numbers in genus zero counting the number of covers CP1 -> CP1 with two branching points with a given branching behavior. By the recent result due to Goulden, Jackson and Vakil, these numbers are piecewise polynomials in the multiplicities of the preimages of the branching points. We describe the partition of the parameter space into polynomiality domains, called chambers, and provide an expression for the difference of two such polynomials for two neighboring chambers. Besides, we provide an explicit formula for the polynomial in a certain chamber called totally negative, which enables us to calculate double Hurwitz numbers in any given chamber as the polynomial for the totally negative chamber plus the sum of the differences between the neighboring polynomials along a path connecting the totally negative chamber with the given one. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 96
页数:18
相关论文
共 21 条
[1]   On Hurwitz numbers and Hedge integrals [J].
Ekedahl, T ;
Lando, S ;
Shapiro, M ;
Vainshtein, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12) :1175-1180
[2]   Hurwitz numbers and intersections on moduli spaces of curves [J].
Ekedahl, T ;
Lando, S ;
Shapiro, M ;
Vainshtein, A .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :297-327
[3]   Multipoint series of Gromov-Witten invariants of CP1 [J].
Getzler, E ;
Okounkov, A ;
Pandharipande, R .
LETTERS IN MATHEMATICAL PHYSICS, 2002, 62 (02) :159-170
[4]   Towards the geometry of double Hurwitz numbers [J].
Goulden, IP ;
Jackson, DM ;
Vakil, R .
ADVANCES IN MATHEMATICS, 2005, 198 (01) :43-92
[5]   Hodge integrals and Hurwitz numbers via virtual localization [J].
Graber, T ;
Vakil, R .
COMPOSITIO MATHEMATICA, 2003, 135 (01) :25-36
[6]   ON THE KODAIRA DIMENSION OF THE MODULI SPACE OF CURVES [J].
HARRIS, J ;
MUMFORD, D .
INVENTIONES MATHEMATICAE, 1982, 67 (01) :23-86
[7]   On Abel's generalisation of the binomial formula. [J].
Hurwitz, A .
ACTA MATHEMATICA, 1902, 26 (01) :199-203
[8]   Topological recursive relations in H2g(Mg,n) [J].
Ionel, EN .
INVENTIONES MATHEMATICAE, 2002, 148 (03) :627-658
[9]   QUANTITATIVE DESCRIPTION OF THE ELABORATION AND MATURATION OF VILLI FROM 10 WEEKS OF GESTATION TO TERM [J].
JACKSON, MR ;
MAYHEW, TM ;
BOYD, PA .
PLACENTA, 1992, 13 (04) :357-370
[10]   Towards an intersection theory on Hurwitz spaces [J].
Kazaryan, ME ;
Lando, SK .
IZVESTIYA MATHEMATICS, 2004, 68 (05) :935-964