On the Regular Integral Solutions of a Generalized Bessel Differential Equation

被引:1
作者
Campos, L. M. B. C. [1 ]
Moleiro, F. [1 ]
Silva, M. J. S. [2 ]
Paquim, J. [2 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Ctr Aeronaut & Space Sci & Technol CCTAE, IDMEC,LAETA, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
关键词
D O I
10.1155/2018/8919516
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The original Bessel differential equation that describes, among many others, cylindrical acoustic or vortical waves, is a particular case of zero degree of the generalized Bessel differential equation that describes coupled acoustic-vortical waves. The solutions of the generalized Bessel differential equation are obtained for all possible combinations of the two complex parameters, order and degree, and finite complex variable, as Frobenius-Fuchs series around the regular singularity at the origin; the series converge in the whole complex plane of the variable, except for the point-at-infinity, that is, the only other singularity of the differential equation. The regular integral solutions of the first and second kinds lead, respectively, to the generalized Bessel and Neumann functions; these reduce to the original Bessel and Neumann functions for zero degree and have alternative expressions for nonzero degree.
引用
收藏
页数:9
相关论文
共 28 条
[1]  
Abramowitz M., 1968, Handbook of Mathematical Functions
[2]  
[Anonymous], 1989, Special Functions
[3]  
[Anonymous], 2012, TRANSCENDENTAL REPRE
[4]  
[Anonymous], 1867, Theorie der Besselschen Funktionen
[5]   On a Sum of Modified Bessel Functions [J].
Baricz, Arpad ;
Pogany, Tibor K. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) :349-360
[6]   Turan determinants of Bessel functions [J].
Baricz, Arpad ;
Pogany, Tibor K. .
FORUM MATHEMATICUM, 2014, 26 (01) :295-322
[7]  
Bernoulli D., NOVI COMMENTARII ACA, V6, P108
[8]  
Bessel F., 1824, ABHANDLUNGEN BERLI M, P1
[9]  
Campos L M B C., 2014, Generalized Calculus with Applications to Matter and Forces
[10]  
Copson E., 1935, An Introduction to the Theory of Functions of a Complex Variable