Nanoscale plasmonic waveguides for filtering and demultiplexing devices.

被引:2
作者
Akjouj, A. [1 ]
Noual, A. [1 ]
Pennec, Y. [1 ]
Djafari-Rouhani, B. [1 ]
机构
[1] Univ Lille 1, Inst Electron Microelectron & Nanotechnol, UMR CNRS 8520, F-59655 Villeneuve Dascq, France
来源
NANOPHOTONICS III | 2010年 / 7712卷
关键词
Plasmonics; Surface Plasmon-Polariton; Transmission; Reflection; Nanoscale Y-bent waveguide; Telecommunication wavelength demultiplexing; RING RESONATORS; METAL; MODES;
D O I
10.1117/12.854733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Numerical simulations, based on a FDTD (finite-difference-time-domain) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) Ag-SiO2-Ag resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication WDM (wavelength demultiplexing). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Measurements of modal symmetry in subwavelength plasmonic slot waveguides [J].
Spasenovic, M. ;
van Oosten, D. ;
Verhagen, E. ;
Kuipers, L. .
APPLIED PHYSICS LETTERS, 2009, 95 (20)
[22]   Titanium nitride nanoparticles as an alternative platform for plasmonic waveguides in the visible and telecommunication wavelength ranges [J].
Zakomirnyi, V. I. ;
Rasskazov, I. L. ;
Gerasimov, V. S. ;
Ershov, A. E. ;
Polyutov, S. P. ;
Karpov, S. V. ;
Agren, H. .
PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2018, 30 :50-56
[23]   Two Frequency-Division Demultiplexing Using Photonic Waveguides by the Presence of Two Geometric Defects [J].
Mimoun, El-Aouni ;
Youssef, Ben-Ali ;
Ilyass, El Kadmiri ;
Abdelaziz, Ouariach ;
Driss, Bria .
OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (03) :326-338
[24]   Plasmonic Response of Nanoscale Spirals [J].
Ziegler, Jed I. ;
Haglund, Richard F., Jr. .
NANO LETTERS, 2010, 10 (08) :3013-3018
[25]   Plasmonic Coaxial Waveguides with Complex Shapes of Cross-Sections [J].
Kozina, Olga ;
Nefedov, Igor ;
Melnikov, Leonid ;
Karilainen, Antti .
MATERIALS, 2011, 4 (01) :104-116
[26]   Terahertz Generation in Nonlinear Plasmonic Waveguides [J].
Qasymeh, Montasir .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2016, 52 (04)
[27]   Plasmonic waveguides with wavelength selective function [J].
Haraguchi, Masasnobu ;
Matsuzaki, Yosuke ;
Tuzura, Tatsuro ;
Okamoto, Toshihiro ;
Fukui, Masuo ;
Okamoto, Kazumasa ;
Seki, Shu ;
Tagawa, Seiichi .
PLASMONICS: NANOIMAGING, NANOFABRICATION, AND THEIR APPLICATIONS IV, 2008, 7033
[28]   Optical Forces in Hybrid Plasmonic Waveguides [J].
Yang, Xiaodong ;
Liu, Yongmin ;
Oulton, Rupert F. ;
Yin, Xiaobo ;
Zhang, Xiang .
NANO LETTERS, 2011, 11 (02) :321-328
[29]   Transmissive color filtering using plasmonic multilayer structure [J].
Yu, Chih-Jui ;
Liang, Yi-Ping ;
Hong, Hwen-Fen ;
Wang, Chih-Ming .
OPTICAL ENGINEERING, 2012, 51 (04)
[30]   Plasmonic waveguides based optical AND gate [J].
Tomer, Sonia ;
Shankhwar, Nishant ;
Kalra, Yogita ;
Sinha, Ravindra Kumar .
PLASMONICS: DESIGN, MATERIALS, FABRICATION, CHARACTERIZATION, AND APPLICATIONS XV, 2017, 10346