Nanoscale plasmonic waveguides for filtering and demultiplexing devices.

被引:2
|
作者
Akjouj, A. [1 ]
Noual, A. [1 ]
Pennec, Y. [1 ]
Djafari-Rouhani, B. [1 ]
机构
[1] Univ Lille 1, Inst Electron Microelectron & Nanotechnol, UMR CNRS 8520, F-59655 Villeneuve Dascq, France
来源
NANOPHOTONICS III | 2010年 / 7712卷
关键词
Plasmonics; Surface Plasmon-Polariton; Transmission; Reflection; Nanoscale Y-bent waveguide; Telecommunication wavelength demultiplexing; RING RESONATORS; METAL; MODES;
D O I
10.1117/12.854733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Numerical simulations, based on a FDTD (finite-difference-time-domain) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) Ag-SiO2-Ag resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication WDM (wavelength demultiplexing). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] HETEROSTRUCTURE LIGHT DEMULTIPLEXING DEVICES.
    Chang, L.L.
    Fang, F.F.
    IBM technical disclosure bulletin, 1985, 27 (08): : 4584 - 4585
  • [2] Wavelength filtering and demultiplexing devices based on ultrathin corrugated MIM waveguides
    Yang, Bao Jia
    Zhou, Yong Jin
    JOURNAL OF MODERN OPTICS, 2016, 63 (09) : 874 - 880
  • [3] Nanoscale optoelectronic photosynthetic devices.
    Greenbaum, E
    Lee, I
    Guillom, MA
    Lee, JW
    Simpson, ML
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U356 - U356
  • [4] CALCULATION OF FILTERING ANTIFOAM DEVICES.
    Vetoshkin, A.G.
    Theoretical Foundations of Chemical Engineering, 1987, 21 (05) : 437 - 443
  • [5] ON STRUCTURALLY COMPENSATED FILTERING DEVICES.
    Takhvanov, G.I.
    Belyanina, N.V.
    Tupitsyn, D.D.
    1984, (03):
  • [6] Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths
    Noual, A.
    Akjouj, A.
    Pennec, Y.
    Gillet, J-N
    Djafari-Rouhani, B.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [7] OPTICAL WAVEGUIDES FOR SUPERCONDUCTOR STUDIES AND DEVICES.
    Ostrowsky, D.B.
    Gilabert, A.
    Vanneste, C.
    Papuchon, M.
    Puech, B.
    1978, E61 (03): : 157 - 159
  • [8] Exploring carbon nanotubes for nanoscale devices.
    Han, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U192 - U192
  • [9] WAVELENGTH DEMULTIPLEXING IN METAL-INSULATOR-METAL PLASMONIC WAVEGUIDES
    Yao, Xiankun
    MODERN PHYSICS LETTERS B, 2014, 28 (04):
  • [10] Microwave Plasmonic Waveguides and Devices
    Ma, Hui Feng
    Wang, Meng
    Zhang, Hao Chi
    2018 JOINT IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY AND 2018 IEEE ASIA-PACIFIC SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC/APEMC), 2018, : 161 - 161