Rapid Deployment of Curved Surfaces via Programmable Auxetics

被引:121
作者
Konakovic-Lukovic, Mina [1 ]
Panetta, Julian [1 ]
Crane, Keenan [2 ]
Pauly, Mark [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Route Cantonale, CH-1015 Lausanne, Switzerland
[2] Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2018年 / 37卷 / 04期
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
computational fabrication; smart materials; digital fabrication; auxetic materials; conformal geometry; DESIGN;
D O I
10.1145/3197517.3201373
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deployable structures are physical mechanisms that can easily transition between two or more geometric configurations; such structures enable industrial, scientific, and consumer applications at a wide variety of scales. This paper develops novel deployable structures that can approximate a large class of doubly-curved surfaces and are easily actuated from a flat initial state via inflation or gravitational loading. The structures are based on two-dimensional rigid mechanical linkages that implicitly encode the curvature of the target shape via a user-programmable pattern that permits locally isotropic scaling under load. We explicitly characterize the shapes that can be realized by such structures-in particular, we show that they can approximate target surfaces of positive mean curvature and bounded scale distortion relative to a given reference domain. Based on this observation, we develop efficient computational design algorithms for approximating a given input geometry. The resulting designs can be rapidly manufactured via digital fabrication technologies such as laser cutting, CNC milling, or 3D printing. We validate our approach through a series of physical prototypes and present several application case studies, ranging from surgical implants to large-scale deployable architecture.
引用
收藏
页数:13
相关论文
共 43 条
[1]   Design and Fabrication of Materials with Desired Deformation Behavior [J].
Bickel, Bernd ;
Baecher, Moritz ;
Otaduy, Miguel A. ;
Lee, Hyunho Richard ;
Pfister, Hanspeter ;
Gross, Markus ;
Matusik, Wojciech .
ACM TRANSACTIONS ON GRAPHICS, 2010, 29 (04)
[2]   Projective Dynamics: Fusing Constraint Projections for Fast Simulation [J].
Bouaziz, Sofien ;
Martin, Sebastian ;
Liu, Tiantian ;
Kavan, Ladislav ;
Pauly, Mark .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04)
[3]   Shape-Up: Shaping Discrete Geometry with Projections [J].
Bouaziz, Sofien ;
Deuss, Mario ;
Schwartzburg, Yuliy ;
Weise, Thibaut ;
Pauly, Mark .
COMPUTER GRAPHICS FORUM, 2012, 31 (05) :1657-1667
[4]   A Simple Geometric Model for Elastic Deformations [J].
Chao, Isaac ;
Pinkall, Ulrich ;
Sanan, Patrick ;
Schroeder, Peter .
ACM TRANSACTIONS ON GRAPHICS, 2010, 29 (04)
[5]   An Asymptotic Numerical Method for Inverse Elastic Shape Design [J].
Chen, Xiang ;
Zheng, Changxi ;
Xu, Weiwei ;
Zhou, Kun .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04)
[6]   Automatic design of fiber-reinforced soft actuators for trajectory matching [J].
Connolly, Fionnuala ;
Walsh, Conor J. ;
Bertoldi, Katia .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (01) :51-56
[7]   Interactive design exploration for constrained meshes [J].
Deng, Bailin ;
Bouaziz, Sofien ;
Deuss, Mario ;
Kaspar, Alexandre ;
Schwartzburg, Yuliy ;
Pauly, Mark .
COMPUTER-AIDED DESIGN, 2015, 61 :13-23
[8]  
Desbrun M, 1999, COMP GRAPH, P317, DOI 10.1145/311535.311576
[9]  
Deuss M., 2015, SHAPEOP A ROBUST EXT, P505
[10]   FIRST VARIATION OF THE GENERAL CURVATURE-DEPENDENT SURFACE ENERGY [J].
Dogan, Guenay ;
Nochetto, Ricardo H. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (01) :59-79