Flow-aware synthesis: A generic motion model for video frame interpolation

被引:7
作者
Xing, Jinbo [1 ,2 ]
Hu, Wenbo [1 ,2 ]
Zhang, Yuechen [1 ]
Wong, Tien-Tsin [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Virtual Real & Human Interact Te, Shenzhen, Peoples R China
关键词
flow-aware; generic motion model; video frame interpolation;
D O I
10.1007/s41095-021-0208-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A popular and challenging task in video research, frame interpolation aims to increase the frame rate of video. Most existing methods employ a fixed motion model, e.g., linear, quadratic, or cubic, to estimate the intermediate warping field. However, such fixed motion models cannot well represent the complicated non-linear motions in the real world or rendered animations. Instead, we present an adaptive flow prediction module to better approximate the complex motions in video. Furthermore, interpolating just one intermediate frame between consecutive input frames may be insufficient for complicated non-linear motions. To enablemulti-frame interpolation, we introduce the time as a control variable when interpolating frames between original ones in our generic adaptive flow prediction module. Qualitative and quantitative experimental results show that our method can produce high-quality results and outperforms the existing state-of-the-art methods on popular public datasets.
引用
收藏
页码:393 / 405
页数:13
相关论文
共 42 条
[1]   A Database and Evaluation Methodology for Optical Flow [J].
Baker, Simon ;
Scharstein, Daniel ;
Lewis, J. P. ;
Roth, Stefan ;
Black, Michael J. ;
Szeliski, Richard .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 92 (01) :1-31
[2]   Depth-Aware Video Frame Interpolation [J].
Bao, Wenbo ;
Lai, Wei-Sheng ;
Ma, Chao ;
Zhang, Xiaoyun ;
Gao, Zhiyong ;
Yang, Ming-Hsuan .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3698-3707
[3]   MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement [J].
Bao, Wenbo ;
Lai, Wei-Sheng ;
Zhang, Xiaoyun ;
Gao, Zhiyong ;
Yang, Ming-Hsuan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) :933-948
[4]  
CHARBONNIER P, 1994, IEEE IMAGE PROC, P168
[5]  
Cheng XH, 2020, AAAI CONF ARTIF INTE, V34, P10607
[6]   All at Once: Temporally Adaptive Multi-frame Interpolation with Advanced Motion Modeling [J].
Chi, Zhixiang ;
Nasiri, Rasoul Mohammadi ;
Liu, Zheng ;
Lu, Juwei ;
Tang, Jin ;
Plataniotis, Konstantinos N. .
COMPUTER VISION - ECCV 2020, PT XXVII, 2020, 12372 :107-123
[7]  
Choi M, 2020, AAAI CONF ARTIF INTE, V34, P10663
[8]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[9]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[10]  
Dosovitskiy Alexey, 2016, ADV NEURAL INFORM PR, V29