AMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae

被引:33
作者
Avershina, Ekaterina [1 ]
Sharma, Priyanka [2 ]
Taxt, Arne M. [1 ,3 ]
Singh, Harpreet [4 ]
Frye, Stephan A. [3 ]
Paul, Kolin [5 ]
Kapil, Arti [6 ]
Naseer, Umaer [7 ]
Kaur, Punit [2 ]
Ahmad, Rafi [1 ,8 ]
机构
[1] Inland Norway Univ Appl Sci, Dept Biotechnol, Holsetgata 22, N-2317 Hamar, Norway
[2] All India Inst Med Sci, Dept Biophys, New Delhi, India
[3] Oslo Univ Hosp, Div Lab Med, Dept Microbiol, PB 4956, N-0424 Oslo, Norway
[4] Indian Council Med Res, Informat Syst & Res Management, New Delhi, India
[5] IIT Delhi, Dept Comp Sci & Engn, New Delhi, India
[6] All India Inst Med Sci, Dept Microbiol, New Delhi, India
[7] Norwegian Inst Publ Hlth, Dept Zoonot Food & Waterborne Infect, N-0213 Oslo, Norway
[8] UiT Arctic Univ Norway, Inst Clin Med, Fac Hlth Sci, Hansine Hansens Veg 18, N-9019 Tromso, Norway
关键词
Antibiotic resistance; Genotype to phenotype; Machine learning; Neural networks; Extended spectrum beta-lactamases; Colistin; E; coli; K; pneumoniae; Carbapenemases; Antibiotic susceptibility testing; Rapid diagnostics; Bacterial infection; GENOME; THERAPY;
D O I
10.1016/j.csbj.2021.03.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Antibiotic resistance poses a major threat to public health. More effective ways of the antibiotic prescription are needed to delay the spread of antibiotic resistance. Employment of sequencing technologies coupled with the use of trained neural network algorithms for genotype-to-phenotype prediction will reduce the time needed for antibiotic susceptibility profile identification from days to hours. In this work, we have sequenced and phenotypically characterized 171 clinical isolates of Escherichia coli and Klebsiella pneumoniae from Norway and India. Based on the data, we have created neural networks to predict susceptibility for ampicillin, 3rd generation cephalosporins and carbapenems. All networks were trained on unassembled data, enabling prediction within minutes after the sequencing information becomes available. Moreover, they can be used both on Illumina and MinION generated data and do not require high genome coverage for phenotype prediction. We cross-checked our networks with previously published algorithms for genotype-to-phenotype prediction and their corresponding datasets. Besides, we also created an ensemble of networks trained on different datasets, which improved the cross-dataset prediction compared to a single network. Additionally, we have used data from direct sequencing of spiked blood cultures and found that AMR-Diag networks, coupled with MinION sequencing, can predict bacterial species, resistome, and phenotype as fast as 1-8 h from the sequencing start. To our knowledge, this is the first study for genotype-to-phenotype prediction: (1) employing a neural network method; (2) using data from more than one sequencing platform; and (3) utilizing sequence data from spiked blood cultures. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1896 / 1906
页数:11
相关论文
共 40 条
[1]   Antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli: comparison between Etest and a broth dilution method [J].
Azrad, Maya ;
Tkhawkho, Linda ;
Isakovich, Natalia ;
Nitzan, Orna ;
Peretz, Avi .
ANNALS OF CLINICAL MICROBIOLOGY AND ANTIMICROBIALS, 2018, 17
[2]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[3]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[4]   ResFinder 4.0 for predictions of phenotypes from genotypes [J].
Bortolaia, Valeria ;
Kaas, Rolf S. ;
Ruppe, Etienne ;
Roberts, Marilyn C. ;
Schwarz, Stefan ;
Cattoir, Vincent ;
Philippon, Alain ;
Allesoe, Rosa L. ;
Rebelo, Ana Rita ;
Florensa, Alfred Ferrer ;
Fagelhauer, Linda ;
Chakraborty, Trinad ;
Neumann, Bernd ;
Werner, Guido ;
Bender, Jennifer K. ;
Stingl, Kerstin ;
Minh Nguyen ;
Coppens, Jasmine ;
Xavier, Basil Britto ;
Malhotra-Kumar, Surbhi ;
Westh, Henrik ;
Pinholt, Mette ;
Anjum, Muna F. ;
Duggett, Nicholas A. ;
Kempf, Isabelle ;
Nykasenoja, Suvi ;
Olkkola, Satu ;
Wieczorek, Kinga ;
Amaro, Ana ;
Clemente, Lurdes ;
Mossong, Joel ;
Losch, Serge ;
Ragimbeau, Catherine ;
Lund, Ole ;
Aarestrup, Frank M. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2020, 75 (12) :3491-3500
[5]   Comparison of Meropenem MICs and Susceptibilities for Carbapenemase-Producing Klebsiella pneumoniae Isolates by Various Testing Methods [J].
Bulik, Catharine C. ;
Fauntleroy, Kathy A. ;
Jenkins, Stephen G. ;
Abuali, Mayssa ;
LaBombardi, Vincent J. ;
Nicolau, David P. ;
Kuti, Joseph L. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2010, 48 (07) :2402-2406
[6]  
Bushnell B., BBMAP SHORT READ ALI
[7]   Etest® versus broth microdilution for ceftaroline MIC determination with Staphylococcus aureus: results from PREMIUM, a European multicentre study [J].
Canton, Rafael ;
Livermore, David M. ;
Isabel Morosini, Maria ;
Diaz-Reganon, Jazmin ;
Rossolini, Gian Maria .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2017, 72 (02) :431-436
[8]   Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis [J].
Cassini, Alessandro ;
Hogberg, Liselotte Diaz ;
Plachouras, Diamantis ;
Quattrocchi, Annalisa ;
Hoxha, Ana ;
Simonsen, Gunnar Skov ;
Colomb-Cotinat, Melanie ;
Kretzschmar, Mirjam E. ;
Devleesschauwer, Brecht ;
Cecchini, Michele ;
Ouakrim, Driss Ait ;
Oliveira, Tiago Cravo ;
Struelens, Marc J. ;
Suetens, Carl ;
Monnet, Dominique L. ;
Strauss, Reinhild ;
Mertens, Karl ;
Struyf, Thomas ;
Catry, Boudewijn ;
Latour, Katrien ;
Ivanov, Ivan Nikolaev ;
Dobreva, Elina Georgieva ;
Tambic Andrasevic, Arjana ;
Soprek, Silvija ;
Budimir, Ana ;
Paphitou, Niki ;
Zemlickova, Helena ;
Olsen, Stefan Schytte ;
Sonksen, Ute Wolff ;
Martin, Pille ;
Ivanova, Marina ;
Lyytikainen, Outi ;
Jalava, Jari ;
Coignard, Bruno ;
Eckmanns, Tim ;
Abu Sin, Muna ;
Haller, Sebastian ;
Daikos, George L. ;
Gikas, Achilleas ;
Tsiodras, Sotirios ;
Kontopidou, Flora ;
Toth, Akos ;
Hajdu, Agnes ;
Guolaugsson, Olafur ;
Kristinsson, Karl G. ;
Murchan, Stephen ;
Burns, Karen ;
Dsstat, Patrizio Pezzotti ;
Gagliotti, Carlo ;
Dumpis, Uga .
LANCET INFECTIOUS DISEASES, 2019, 19 (01) :56-66
[9]  
CLSI, 2019, M100S29 CLIN LAB STA
[10]   Antimicrobial Resistance Prediction in PATRIC and RAST [J].
Davis, James J. ;
Boisvert, Sebastien ;
Brettin, Thomas ;
Kenyon, Ronald W. ;
Mao, Chunhong ;
Olson, Robert ;
Overbeek, Ross ;
Santerre, John ;
Shukla, Maulik ;
Wattam, Alice R. ;
Will, Rebecca ;
Xia, Fangfang ;
Stevens, Rick .
SCIENTIFIC REPORTS, 2016, 6