The augmented radiologist: artificial intelligence in the practice of radiology

被引:54
作者
Sorantin, Erich [1 ]
Grasser, Michael G. [1 ]
Hemmelmayr, Ariane [1 ]
Tschauner, Sebastian [1 ]
Hrzic, Franko [2 ]
Weiss, Veronika [1 ]
Lacekova, Jana [1 ]
Holzinger, Andreas [3 ]
机构
[1] Med Univ Graz, Dept Radiol, Div Pediat Radiol, Auenbruggerpl 36, A-8036 Graz, Austria
[2] Univ Rijeka, Fac Engn, Dept Comp Engn, Vukovarska 58, Rijeka 51000, Croatia
[3] Med Univ Graz, Inst Med Informat Stat & Documentat, Graz, Austria
基金
奥地利科学基金会;
关键词
Artificial intelligence; Clinical decision-making; Deep learning; Pediatric radiology; Radiomics; CT; UNCERTAINTY; MODEL;
D O I
10.1007/s00247-021-05177-7
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
In medicine, particularly in radiology, there are great expectations in artificial intelligence (AI), which can "see" more than human radiologists in regard to, for example, tumor size, shape, morphology, texture and kinetics - thus enabling better care by earlier detection or more precise reports. Another point is that AI can handle large data sets in high-dimensional spaces. But it should not be forgotten that AI is only as good as the training samples available, which should ideally be numerous enough to cover all variants. On the other hand, the main feature of human intelligence is content knowledge and the ability to find near-optimal solutions. The purpose of this paper is to review the current complexity of radiology working places, to describe their advantages and shortcomings. Further, we give an AI overview of the different types and features as used so far. We also touch on the differences between AI and human intelligence in problem-solving. We present a new AI type, labeled "explainable AI," which should enable a balance/cooperation between AI and human intelligence - thus bringing both worlds in compliance with legal requirements. For support of (pediatric) radiologists, we propose the creation of an AI assistant that augments radiologists and keeps their brain free for generic tasks.
引用
收藏
页码:2074 / 2086
页数:13
相关论文
共 98 条
[1]  
AiDoc Inc, PROV RAD AI
[2]   Radiologist performance in the detection of lung cancer using CT [J].
Al Mohammad, B. ;
Hillis, S. L. ;
Reed, W. ;
Alakhras, M. ;
Brennan, P. C. .
CLINICAL RADIOLOGY, 2019, 74 (01) :67-75
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]  
AUER P, 1995, MACH LEARN, V18, P187, DOI 10.1007/BF00993410
[5]  
Badretale S, 2017, 2017 24TH NATIONAL AND 2ND INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), P142
[6]  
Battineni G., 2019, Inform Med Unlocked, V16, P100200, DOI DOI 10.1016/J.IMU.2019.100200
[7]   Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods [J].
Beichel, Reinhard ;
Bornik, Alexander ;
Bauer, Christian ;
Sorantin, Erich .
MEDICAL PHYSICS, 2012, 39 (03) :1361-1373
[8]   Improving automatic query classification via semi-supervised learning [J].
Beitzel, SM ;
Jensen, EC ;
Frieder, O ;
Lewis, DD ;
Chowdhury, A ;
Kolcz, A .
Fifth IEEE International Conference on Data Mining, Proceedings, 2005, :42-49
[9]   Workload of Radiologists in United States in 2006-2007 and Trends Since 1991-1992 [J].
Bhargavan, Mythreyi ;
Kaye, Adam H. ;
Forman, Howard P. ;
Sunshine, Jonathan H. .
RADIOLOGY, 2009, 252 (02) :458-467
[10]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157