On Weyl Calculus in Infinitely Many Variables

被引:0
作者
Beltita, I. [1 ]
Beltita, D. [1 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, Bucharest, Romania
来源
XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS | 2010年 / 1307卷
关键词
Weyl calculus; infinite-dimensional Heisenberg group; coadjoint orbit; REPRESENTATIONS; QUANTIZATION;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We outline an abstract approach to the pseudo-differential Weyl calculus for operators in function spaces in infinitely many variables. Our earlier approach to the Weyl calculus for Lie group representations is extended to the case of representations associated with infinite-dimensional coadjoint orbits. We illustrate the approach by the case of infinite-dimensional Heisenberg groups. The classical Weyl-Hormander calculus is recovered for the Schrodinger representations of the finite-dimensional Heisenberg groups.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 27 条
[1]   Asymptotic quantization for solution manifolds of some infinite dimensional Hamiltonian systems [J].
Albeverio, S ;
Daletskii, A .
JOURNAL OF GEOMETRY AND PHYSICS, 1996, 19 (01) :31-46
[2]   Algebras of pseudodifferential operators in L2 given by smooth measures on Hilbert spaces [J].
Albeverio, S ;
Daletskii, A .
MATHEMATISCHE NACHRICHTEN, 1998, 192 :5-22
[3]  
[Anonymous], 1998, GAUSSIAN MEASURES
[4]  
[Anonymous], 2010, Ann. Univ. Buchar. Math. Ser.
[5]  
Beltita I, 2009, AIP CONF PROC, V1191, P7, DOI 10.1063/1.3275600
[6]  
BELTITA I, 2010, WEYL QUANTIZATION IN
[7]  
BELTITA I, 2008, ARXIV10082935V1MATHF
[8]  
BELTITA I, J FOURIER A IN PRESS
[9]  
BELTITA I, WEYL CALCUL IN PRESS
[10]  
BELTITA I, 2006, ARXIV10060585V3MATHA