Surface coating effect on thermal properties of delithiated lithium nickel manganese layer oxide

被引:11
作者
Jo, Chang-Heum [1 ]
Cho, Dae-Hyun [1 ]
Lee, Jae-Won [2 ]
Hitoshi, Yashiro [3 ]
Myung, Seung-Taek [1 ]
机构
[1] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea
[2] Dankook Univ, Dept Energy Engn, Cheonan 330714, South Korea
[3] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan
基金
新加坡国家研究基金会;
关键词
Coating; Delithiated cathode; Thermal stability; Lithium; Battery; LI-ION BATTERIES; CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; POSITIVE ELECTRODE; MICROSTRUCTURE; INSTABILITY; STABILITY;
D O I
10.1016/j.jpowsour.2015.02.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermal stability of electrochemically delithiated bare, silica-coated and silicon phosphate-coated Li-0.3[Ni0.7Mn0.3]O-2 is studied with in-situ high temperature X-ray diffraction (HT-XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and time of flight-secondary ion spectroscopy (ToF-SIMS). For the three delithiated materials, gradual phase transformation appears in the crystal structure in the temperature range of 25-600 degrees C: rhombohedral to salt structure via cubic spinel phase, which results from oxygen evolution from the active materials as noticed in TGA. Coating evidently retards the above phase transition toward a high temperature approximately over 40 degrees C owing to less amount of oxygen release from the crystal structure. This effect appears more prominent in the presence of the silicon phosphate coating layer relative to the silica, presumably due to presence of the Si-P-O covalent character. Also, the surface layer remains up to 600 degrees C, showing original smooth edges. Therefore, thermal degradation of the active materials is delayed when their surfaces are modified by nanoscale coating layers. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 37 条
[1]   Microstructure of LiCoO2 with and without "AIPO4" nanoparticle coating:: Combined STEM and XPS studies [J].
Appapillai, Anjuli T. ;
Mansour, Azzam N. ;
Cho, Jaephil ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2007, 19 (23) :5748-5757
[2]   Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina [J].
Bettge, Martin ;
Li, Yan ;
Sankaran, Bharat ;
Rago, Nancy Dietz ;
Spila, Timothy ;
Haasch, Richard T. ;
Petrov, Ivan ;
Abraham, Daniel P. .
JOURNAL OF POWER SOURCES, 2013, 233 :346-357
[3]   Study of Thermal Decomposition of Li1-x(Ni1/3Mn1/3Co1/3)0.9O2 Using In-Situ High-Energy X-Ray Diffraction [J].
Chen, Zonghai ;
Ren, Yang ;
Lee, Eungje ;
Johnson, Christopher ;
Qin, Yan ;
Amine, Khalil .
ADVANCED ENERGY MATERIALS, 2013, 3 (06) :729-736
[4]   Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 [J].
Cho, Dae-Hyun ;
Jo, Chang-Heum ;
Cho, Woosuk ;
Kim, Young-Jun ;
Yashiro, Hitoshi ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A920-A926
[5]   Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction [J].
Cho, Yong-Hun ;
Jang, Donghyuk ;
Yoon, Jeongbae ;
Kim, Hyunchul ;
Ahn, Tae Kyu ;
Nam, Kyung-Wan ;
Sung, Yung-Eun ;
Kim, Woo-Seong ;
Lee, Yun-Sung ;
Yang, Xiao-Qing ;
Yoon, Won-Sub .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 562 :219-223
[6]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[7]   Characterization of large format lithium ion battery exposed to extremely high temperature [J].
Feng, Xuning ;
Sun, Jing ;
Ouyang, Minggao ;
He, Xiangming ;
Lu, Languang ;
Han, Xuebing ;
Fang, Mou ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2014, 272 :457-467
[8]   Thermal stability of lithium nickel oxide derivatives.: Part II:: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30).: Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2 [J].
Guilmard, M ;
Croguennec, L ;
Delmas, C .
CHEMISTRY OF MATERIALS, 2003, 15 (23) :4484-4493
[9]   Effects of aluminum on the structural and electrochemical properties of LiNiO2 [J].
Guilmard, M ;
Rougier, A ;
Grüne, A ;
Croguennec, L ;
Delmas, C .
JOURNAL OF POWER SOURCES, 2003, 115 (02) :305-314
[10]   Reactivity of Liy[NixCo1-2xMnx]O2 (x=0.1, 0.2, 0.35, 0.45, and 0.5; y=0.3, 0.5) with nonaqueous solvents and electrolytes studied by ARC [J].
Jiang, J ;
Eberman, KW ;
Krause, LJ ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :A566-A569