Integrated condition-based planning of production and utility systems under uncertainty

被引:13
|
作者
Zulkafli, Nur I. [1 ,2 ]
Kopanos, Georgios M. [1 ]
机构
[1] Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, England
[2] Univ Tekn Malaysia Melaka, Ctr Adv Res Energy, Durian Tunggal 76100, Melaka, Malaysia
关键词
Production planning; Maintenance; Cleaning; Utility systems; Rolling horizon; Optimization; Combined heat and power; ENERGY-UTILIZATION; PROCESS PLANTS; MILP MODEL; MAINTENANCE; OPTIMIZATION; NETWORK; HEAT; COMPRESSORS;
D O I
10.1016/j.jclepro.2017.08.152
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A general rolling horizon optimization framework for the integrated condition-based operational and maintenance planning of production and utility systems in process industries is presented. In brief, the proposed optimization framework considers for the production and utility units: (i) improved unit performance degradation and recovery models that depend on both the cumulative time of operation and the unit operating levels deviation of units; (ii) modified operating capacities under online cleaning periods; (iii) different types of cleaning tasks (flexible time-window and online or offline condition based); (iv) alternative options for offline cleaning tasks; (v) limited availability of cleaning resources; (vi) the initial state of the overall system at the beginning of each planning horizon; and (vii) terminal constraints for the rolling horizon problem. Total cost constitutes the objective function of the resulting problem and includes unit operating costs, cleaning costs, energy consumption costs and resource purchases costs. The case studies solved show that when compared to solutions obtained by sequential approaches the proposed integrated approach provides significantly better solutions in terms of total costs (reduction from 5% to 32%), and especially in cost terms related to utility units operation, energy consumption, cleaning and startup/shutdown operations. Unnecessary cleanings and purchases of resources can be avoided by the proposed integrated approach. Overall, the significant reduction in total costs is a direct result of the enhanced energy efficiency of the overall system through the efficient generation and use of energy, the improved utilization of energy and material resources resulting in a more sustainable and cleaner production practices. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:776 / 805
页数:30
相关论文
共 50 条