A locking-free meshless local Petrov-Galerkin formulation for thick and thin plates

被引:46
|
作者
Li, Q
Soric, J
Jarak, T
Atluri, SN
机构
[1] Univ Calif Irvine, Ctr Aerosp Res & Educ, Irvine, CA 92612 USA
[2] Univ Zagreb, Dept Mech Engn & Naval Architecture, Zagreb 10000, Croatia
关键词
meshless method; meshless local Petrov-Galerkin methods; local symmetric weak form; moving least squares interpolation; solid plate; shear locking; thickness locking;
D O I
10.1016/j.jcp.2005.02.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a locking-free meshless local Petrov-Galerkin formulation is presented for shear flexible thick plates, which remains theoretically valid in the thin-plate limit. The kinematics of a three-dimensional solid is used, instead of the conventional plate assumption. The local symmetric weak form is derived for cylindrical shaped local sub-domains. The numerical characteristics of the local symmetric weak form, in the thin plate limit, are discussed. Based on this discussion, the shear locking is theoretically eliminated by changing the two dependent variables in the governing equations. The moving least square interpolation is utilized in the in-plane numerical discretization for all the three displacement components. In the thickness direction, on the other hand, a linear interpolation is used for in-plane displacements, while a hierarchical quadratic interpolation is utilized for the transverse displacement, in order to eliminate the thickness locking. Numerical examples in both the thin plate limit and the thick plate limit are presented, and the results are compared with available analytical solutions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 133
页数:18
相关论文
共 50 条
  • [31] Arbitrary placement of secondary nodes, and error control, in the meshless local Petrov-Galerkin (MLPG) method
    Kim, HG
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2000, 1 (03): : 11 - 32
  • [32] Meshless Local Petrov-Galerkin Method for Three-Dimensional Heat Transfer Analysis
    Tian, Jun
    Rao, Singiresu S.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2012, 134 (11):
  • [33] Meshless Local Petrov-Galerkin (MLPG) mixed Finite Difference Method for solid mechanics
    Aduri, S. N.
    Liu, H. T.
    Han, Z. D.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 15 (01): : 1 - 16
  • [34] An adaptive mesh-independent numerical integration for meshless local Petrov-Galerkin method
    Jin Yeon Cho
    Young Burm Jee
    KSME International Journal, 2003, 17 (7): : 986 - 998
  • [35] A meshless local petrov-galerkin method for magnetic diffusion in non-magnetic conductors
    Johnson, J. N.
    Owen, J. M.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2007, 22 (03): : 165 - 188
  • [36] Improved meshless local Petrov-Galerkin method for two-dimensional potential problems
    Zheng Bao-Jing
    Dai Bao-Dong
    ACTA PHYSICA SINICA, 2010, 59 (08) : 5182 - 5189
  • [37] An adaptive mesh-independent numerical integration for meshless local Petrov-Galerkin method
    Cho, JY
    Jee, YB
    KSME INTERNATIONAL JOURNAL, 2003, 17 (07): : 986 - 998
  • [38] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
    王启防
    戴保东
    栗振锋
    Chinese Physics B, 2013, (08) : 242 - 248
  • [39] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
    Wang Qi-Fang
    Dai Bao-Dong
    Li Zhen-Feng
    CHINESE PHYSICS B, 2013, 22 (08)
  • [40] Groundwater flow simulation in unconfined aquifers using meshless local Petrov-Galerkin method
    Swathi, Boddula
    Eldho, T. I.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 48 : 43 - 52