A locking-free meshless local Petrov-Galerkin formulation for thick and thin plates

被引:46
|
作者
Li, Q
Soric, J
Jarak, T
Atluri, SN
机构
[1] Univ Calif Irvine, Ctr Aerosp Res & Educ, Irvine, CA 92612 USA
[2] Univ Zagreb, Dept Mech Engn & Naval Architecture, Zagreb 10000, Croatia
关键词
meshless method; meshless local Petrov-Galerkin methods; local symmetric weak form; moving least squares interpolation; solid plate; shear locking; thickness locking;
D O I
10.1016/j.jcp.2005.02.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a locking-free meshless local Petrov-Galerkin formulation is presented for shear flexible thick plates, which remains theoretically valid in the thin-plate limit. The kinematics of a three-dimensional solid is used, instead of the conventional plate assumption. The local symmetric weak form is derived for cylindrical shaped local sub-domains. The numerical characteristics of the local symmetric weak form, in the thin plate limit, are discussed. Based on this discussion, the shear locking is theoretically eliminated by changing the two dependent variables in the governing equations. The moving least square interpolation is utilized in the in-plane numerical discretization for all the three displacement components. In the thickness direction, on the other hand, a linear interpolation is used for in-plane displacements, while a hierarchical quadratic interpolation is utilized for the transverse displacement, in order to eliminate the thickness locking. Numerical examples in both the thin plate limit and the thick plate limit are presented, and the results are compared with available analytical solutions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 133
页数:18
相关论文
共 50 条
  • [1] Analysis of shear flexible beams, using the meshless local Petrov-Galerkin method, based on a locking-free formulation
    Cho, JY
    Atluri, SN
    ENGINEERING COMPUTATIONS, 2001, 18 (1-2) : 215 - 240
  • [2] A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analyses of thin plates
    Gu, YT
    Liu, GR
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2001, 2 (04): : 463 - 476
  • [3] Meshless local Petrov-Galerkin method in anisotropic elasticity
    Sladek, J
    Sladek, V
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (05): : 477 - 489
  • [4] A wachspress meshless local Petrov-Galerkin method
    Barry, W
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (05) : 509 - 523
  • [5] Analysis of rectangular square plates by the mixed Meshless Local Petrov-Galerkin (MLPG) approach
    Jarak, T.
    Soric, J.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 38 (03): : 231 - 261
  • [6] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [7] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wuensche, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2006, 4 (02): : 109 - 117
  • [8] The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method
    Atluri, S
    Shen, SP
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 23 (1-2) : 73 - 93
  • [9] Treatment of Material Discontinuity in the Meshless Local Petrov-Galerkin Method
    Yuan, Xufei
    Gu, Gendai
    Zhao, Meiling
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 157 - 161
  • [10] Meshless local Petrov-Galerkin method with complex variables for elasticity
    Yang Xiu-Li
    Dai Bao-Dong
    Li Zhen-Feng
    ACTA PHYSICA SINICA, 2012, 61 (05)