Stabilization of arbitrary unstable periodic orbits of nonlinear systems

被引:0
作者
Grosu, I [1 ]
机构
[1] Univ Med & Pharm Gr T Popa, Iasi, Romania
来源
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS | 2003年 / 10卷 / 06期
关键词
chaos; synchronization; unstable periodic orbits; stabilization of UPOs; delay systems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new algorithm for stabilization of unstable periodic orbits (UPOs) is proposed. It is based on the open-plus-closed-loop (OPCL) master-slave synchronization method [15]. The algorithm can be applied to continuous systems and delay systems, as well as discrete systems and slowly nonstationary discrete systems. Numerical results are given for Lorenz, Rossler, Mackay-Glass, Ikeda and nonstationary logistic systems. Any UPO of a low or high-dimensional system can be robustly stabilized. Also, the algorithm offers a periodic driving in order to obtain a periodic behavior of a desired period. The method is general and easy to use.
引用
收藏
页码:853 / 863
页数:11
相关论文
共 36 条
[1]   EXPERIMENTAL CHARACTERIZATION OF UNSTABLE PERIODIC-ORBITS BY CONTROLLING CHAOS [J].
BIELAWSKI, S ;
DEROZIER, D ;
GLORIEUX, P .
PHYSICAL REVIEW A, 1993, 47 (04) :R2492-R2495
[2]   Stability of periodic orbits controlled by time-delay feedback [J].
Bleich, ME ;
Socolar, JES .
PHYSICS LETTERS A, 1996, 210 (1-2) :87-94
[3]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[4]   Bifurcation control of two nonlinear models of cardiac activity [J].
Brandt, ME ;
Chen, GR .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (10) :1031-1034
[5]  
Chen G., 1998, CHAOS ORDER PERSPECT
[6]  
Chen G., 1999, CONTROLLING CHAOS BI
[7]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[8]   A modified open-plus-closed-loop approach to control chaos in nonlinear oscillations [J].
Chen, LQ ;
Liu, YZ .
PHYSICS LETTERS A, 1998, 245 (1-2) :87-90
[9]   An open-plus-closed-loop control for discrete chaos and hyperchaos [J].
Chen, LQ .
PHYSICS LETTERS A, 2001, 281 (5-6) :327-333
[10]   Using noise and chaos control to control nonchaotic systems [J].
Christini, DJ ;
Collins, JJ .
PHYSICAL REVIEW E, 1995, 52 (06) :5806-5809