Components of first-countability and various kinds of pseudoopen mappings

被引:7
作者
Arhangel'skii, Alexander
机构
[1] Moscow, h. 33
关键词
First-countable; Frechet-Urysohn; Countably compact; Pseudoopen mapping; Pseudocompact; Biquotient mapping; S-mapping; Sensor; K-Sensor; Point-countable base; Topological group; Countable fan-tightness;
D O I
10.1016/j.topol.2010.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new classes of pseudoopen continuous mappings are introduced. Using these, we provide some sufficient conditions for an image of a space under a pseudoopen continuous mapping to be first-countable, or for the mapping to be biquotient. In particular, we show that if a regular pseudocompact space Y is an image of a metric space X under a pseudoopen continuous almost S-mapping, then Y is first-countable. Among our main results are Theorems 2.5, 211, 2.12, 2.13, 2.14. See also Example 2.15, Corollary 2.7, and Theorem 2.18. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 1972, Gen. Topol. Appl.
[2]  
[Anonymous], 2008, Topological groups and related structures
[3]  
[Anonymous], 1986, Soviet Mathematics Doklady
[4]  
[Anonymous], 1989, SIGMA SER PURE MATH
[5]  
[Anonymous], 1963, SOVIET MATH DOKL
[6]  
Arhangel'skii AV, 2010, COMMENT MATH UNIV CA, V51, P99
[7]  
Arhangel'skii A.V., 1974, MATH APPL
[8]  
Arhangel'skii A.V., 1996, Comment.Math.Univ.Carolinae, V37, P567
[9]  
Burke Dennis K., 1984, Handbook of Set-Theoretic Topology, P347
[10]  
FILIPPOV VV, 1969, MAT SBORNIK, V80, P521