Fault Diagnosis of Rotating Machine Using an Indirect Observer and Machine Learning

被引:0
|
作者
TayebiHaghighi, Shahnaz [1 ]
Koo, Insoo [1 ]
机构
[1] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan, South Korea
基金
新加坡国家研究基金会;
关键词
fault diagnosis; machine learning; proportional multi integral observer; support vector machine; sliding mode fault observer; rotating machine; SYSTEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bearing is one of the important mechanical components to reduce friction in rotating machines. Early fault diagnosis in bearings is an important challenge to the prevention of full failure and avoiding disorder of the machine. In this paper, an indirect observer and machine learning technique are adopted for fault identification in bearing. To develop an indirect observer, in the first step, the autoregressive with uncertainty modeling technique is proposed to modeling the RMS (indirect) normal signal of bearing. After that, the robust (sliding fault detection) proportional multi integral with autoregressive external input modeling (ARPMI) observer was used to solve the unknown signal estimation in bearing. Besides, the support vector machine (SVM) technique for fault classification is proposed. The effectiveness of the proposed scheme is validated using Case Western Reverse University (CWRU) dataset. Experimental results show that, the proposed scheme improves the average performance for various rotational speed fault identification by about 10.5% and 13.5% compared with the proportional multi integral with autoregressive external input modeling (APMI) observer and proportional-integral with autoregressive external input modeling (API) observer, respectively.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [21] Fault diagnosis of rotating machine by isometric feature mapping
    Zhang, Yun
    Li, Benwei
    Wang, Zibin
    Wang, Wen
    Wang, Lin
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (11) : 3215 - 3221
  • [22] Fault diagnosis of ball bearings using machine learning methods
    Kankar, P. K.
    Sharma, Satish C.
    Harsha, S. P.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 1876 - 1886
  • [23] Fault Diagnosis in Electric Drives using Machine Learning Approaches
    Silva, Andre A.
    Bazzi, Ali M.
    Gupta, Shalabh
    2013 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), 2013, : 722 - 726
  • [24] Transformer Incipient Fault Diagnosis using Machine Learning Classifiers
    Cheemala, Vaishnavi
    Asokan, Avinash Nelson
    Preetha, P.
    4TH INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS (CATCON 2019), 2019,
  • [25] Gear Fault Diagnosis and Classification Using Machine Learning Classifier
    Sahoo, Sudarsan
    Laskar, R. A.
    Das, J. K.
    Laskar, S. H.
    2019 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE (ISMSI 2019), 2019, : 69 - 72
  • [26] Engine gearbox fault diagnosis using machine learning approach
    Vernekar, Kiran
    Kumar, Hemantha
    Gangadharan, K., V
    JOURNAL OF QUALITY IN MAINTENANCE ENGINEERING, 2018, 24 (03) : 345 - 357
  • [27] Fault Diagnosis of Batch Reactor Using Machine Learning Methods
    Subramanian, Sujatha
    Ghouse, Fathima
    Natarajan, Pappa
    MODELLING AND SIMULATION IN ENGINEERING, 2014, 2014 (2014)
  • [28] Fault-Diagnosis Method for Rotating Machinery Based on SVMD Entropy and Machine Learning
    Zhang, Lijun
    Zhang, Yuejian
    Li, Guangfeng
    ALGORITHMS, 2023, 16 (06)
  • [29] Crack fault diagnosis of rotating machine in nuclear power plant based on ensemble learning
    Zhong, Xianping
    Ban, Heng
    ANNALS OF NUCLEAR ENERGY, 2022, 168
  • [30] A Stochastic Learning Algorithm for Machine Fault Diagnosis
    Dong, Zhipeng
    Liu, Yucheng
    Kang, Jianshe
    Zhang, Shaohui
    SHOCK AND VIBRATION, 2022, 2022