Convergence of Nonperturbative Approximations to the Renormalization Group

被引:93
作者
Balog, Ivan [1 ]
Chate, Hugues [2 ,3 ,4 ]
Delamotte, Bertrand [4 ]
Marohnic, Maroje [5 ]
Wschebor, Nicolas [6 ]
机构
[1] Inst Phys, Bijenicka Cesta 46, HR-10001 Zagreb, Croatia
[2] Univ Paris Saclay, CEA Saclay, CNRS, Serv Phys Etat Condense,CEA, F-91191 Gif Sur Yvette, France
[3] Computat Sci Res Ctr, Beijing 100094, Peoples R China
[4] Sorbonne Univ, CNRS, LPTMC, F-75005 Paris, France
[5] Visage Technol AB, Diskettgatan 11A, SE-58335 Linkoping, Sweden
[6] Univ Republica, Fac Ingn, Inst Fis, Montevideo 11000, Uruguay
关键词
CRITICAL EXPONENTS; EQUATION; FLOW;
D O I
10.1103/PhysRevLett.123.240604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide analytical arguments showing that the "nonperturbative" approximation scheme to Wilson's renormalization group known as the derivative expansion has a finite radius of convergence. We also provide guidelines for choosing the regulator function at the heart of the procedure and propose empirical rules for selecting an optimal one, without prior knowledge of the problem at stake. Using the Ising model in three dimensions as a testing ground and the derivative expansion at order six, we find fast convergence of critical exponents to their exact values, irrespective of the well-behaved regulator used, in full agreement with our general arguments. We hope these findings will put an end to disputes regarding this type of nonperturbative methods.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Nonperturbative renormalization group preserving full-momentum dependence: Implementation and quantitative evaluation [J].
Benitez, F. ;
Blaizot, J. -P. ;
Chate, H. ;
Delamotte, B. ;
Mendez-Galain, R. ;
Wschebor, N. .
PHYSICAL REVIEW E, 2012, 85 (02)
[2]   Solutions of renormalization-group flow equations with full momentum dependence [J].
Benitez, F. ;
Blaizot, J. -P. ;
Chate, H. ;
Delamotte, B. ;
Mendez-Galain, R. ;
Wschebor, N. .
PHYSICAL REVIEW E, 2009, 80 (03)
[3]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[4]   A new method to solve the non-perturbative renormalization group equations [J].
Blaizot, JP ;
Méndez-Galain, R ;
Wschebor, N .
PHYSICS LETTERS B, 2006, 632 (04) :571-578
[5]   25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice [J].
Campostrini, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW E, 2002, 65 (06)
[6]   Quantitative phase diagrams of branching and annihilating random walks -: art. no. 255703 [J].
Canet, L ;
Chaté, H ;
Delamotte, B .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :255703-1
[7]   Nonperturbative renormalization-group study of reaction-diffusion processes -: art. no. 195703 [J].
Canet, L ;
Delamotte, B ;
Deloubrière, O ;
Wschebor, N .
PHYSICAL REVIEW LETTERS, 2004, 92 (19) :195703-1
[8]   Optimization of the derivative expansion in the nonperturbative renormalization group [J].
Canet, L ;
Delamotte, B ;
Mouhanna, D ;
Vidal, J .
PHYSICAL REVIEW D, 2003, 67 (06)
[9]   Nonperturbative renormalization group approach to the Ising model:: A derivative expansion at order partial derivative4 -: art. no. 064421 [J].
Canet, L ;
Delamotte, B ;
Mouhanna, D ;
Vidal, J .
PHYSICAL REVIEW B, 2003, 68 (06)
[10]   Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: General framework and first applications (vol 84, 061128, 2011) [J].
Canet, Leonie ;
Chate, Hugues ;
Delamotte, Bertrand ;
Wschebor, Nicolas .
PHYSICAL REVIEW E, 2012, 86 (01)