1D CNN Architectures for Music Genre Classification

被引:17
作者
Allamy, Safaa [1 ]
Koerich, Alessandro Lameiras [1 ]
机构
[1] Univ Quebec, Ecole Technol Super, Montreal, PQ, Canada
来源
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021) | 2021年
关键词
Convolutional neural networks; deep learning; audio processing;
D O I
10.1109/SSCI50451.2021.9659979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a 1D residual convolutional neural network (CNN) architecture for music genre classification and compares it with other recent 1D CNN architectures. The 1D CNNs learn a representation and a discriminant directly from the raw audio signal. Several convolutional layers capture the time-frequency characteristics of the audio signal and learn various filters relevant to the music genre recognition task. The proposed approach splits the audio signal into overlapped segments using a sliding window to comply with the fixed-length input constraint of the 1D CNNs. As a result, music genre classification can be carried out on a single audio segment or on aggregating the predictions on several audio segments, which improves the final accuracy. The performance of the proposed 1D residual CNN is assessed on a public dataset of 1,000 audio clips. The experimental results have shown that it achieves 80.93% of mean accuracy in classifying music genres and outperforms other 1D CNN architectures.
引用
收藏
页数:7
相关论文
共 50 条
[21]   CNN ARCHITECTURES FOR LARGE-SCALE AUDIO CLASSIFICATION [J].
Hershey, Shawn ;
Chaudhuri, Sourish ;
Ellis, Daniel P. W. ;
Gemmeke, Jort F. ;
Jansen, Aren ;
Moore, R. Channing ;
Plakal, Manoj ;
Platt, Devin ;
Saurous, Rif A. ;
Seybold, Bryan ;
Slaney, Malcolm ;
Weiss, Ron J. ;
Wilson, Kevin .
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, :131-135
[22]   SVM and KNN Based CNN Architectures for Plant Classification [J].
Ghosh, Sukanta ;
Singh, Amar ;
Kavita ;
Jhanjhi, N. Z. ;
Masud, Mehedi ;
Aljahdali, Sultan .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03) :4257-4274
[23]   Music Feature Maps with Convolutional Neural Networks for Music Genre Classification [J].
Senac, Christine ;
Pellegrini, Thomas ;
Mouret, Florian ;
Pinquier, Julien .
PROCEEDINGS OF THE 15TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2017,
[24]   Image-Based malware classification using ensemble of CNN architectures (IMCEC) [J].
Vasan, Danish ;
Alazab, Mamoun ;
Wassan, Sobia ;
Safaei, Babak ;
Zheng, Qin .
COMPUTERS & SECURITY, 2020, 92
[25]   Combining CNN and Broad Learning for Music Classification [J].
Tang, Huan ;
Chen, Ning .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (03) :695-701
[26]   Music Genre Classification using Deep Neural Networks [J].
Yimer, Mekonen Hiwot ;
Yu, Yongbin ;
Adu, Kwabena ;
Favour, Ekong ;
Liyih, Sinishaw Melikamu ;
Patamia, Rutherford Agbeshi .
2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, :2384-2391
[27]   Classification of Music Genre using Deep Learning Approaches [J].
Srinivas, U. Mohan ;
Rafi, Shaik ;
Manohar, Tinnavalli Venkata ;
Rao, M. Venkat .
2024 4TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING, AISP, 2024,
[28]   Convolutional Neural Networks Approach for Music Genre Classification [J].
Cheng, Yu-Huei ;
Chang, Pang-Ching ;
Kuo, Che-Nan .
2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020), 2021, :399-403
[29]   Bangla Music Genre Classification Using Neural Network [J].
Al Mamunl, Md Afif ;
Kadir, Imamul ;
Rabby, A. k M. Shahariar Azad ;
Al Azmi, Abdullah .
PROCEEDINGS OF THE 2019 8TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART-2019), 2019, :397-403
[30]   A FEATURE SELECTION APPROACH FOR AUTOMATIC MUSIC GENRE CLASSIFICATION [J].
Silla, Carlos N., Jr. ;
Koerich, Alessandro L. ;
Kaestner, Celso A. A. .
INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2009, 3 (02) :183-208