1D CNN Architectures for Music Genre Classification

被引:13
作者
Allamy, Safaa [1 ]
Koerich, Alessandro Lameiras [1 ]
机构
[1] Univ Quebec, Ecole Technol Super, Montreal, PQ, Canada
来源
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021) | 2021年
关键词
Convolutional neural networks; deep learning; audio processing;
D O I
10.1109/SSCI50451.2021.9659979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a 1D residual convolutional neural network (CNN) architecture for music genre classification and compares it with other recent 1D CNN architectures. The 1D CNNs learn a representation and a discriminant directly from the raw audio signal. Several convolutional layers capture the time-frequency characteristics of the audio signal and learn various filters relevant to the music genre recognition task. The proposed approach splits the audio signal into overlapped segments using a sliding window to comply with the fixed-length input constraint of the 1D CNNs. As a result, music genre classification can be carried out on a single audio segment or on aggregating the predictions on several audio segments, which improves the final accuracy. The performance of the proposed 1D residual CNN is assessed on a public dataset of 1,000 audio clips. The experimental results have shown that it achieves 80.93% of mean accuracy in classifying music genres and outperforms other 1D CNN architectures.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] SVM and KNN Based CNN Architectures for Plant Classification
    Ghosh, Sukanta
    Singh, Amar
    Kavita
    Jhanjhi, N. Z.
    Masud, Mehedi
    Aljahdali, Sultan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 4257 - 4274
  • [22] Music Feature Maps with Convolutional Neural Networks for Music Genre Classification
    Senac, Christine
    Pellegrini, Thomas
    Mouret, Florian
    Pinquier, Julien
    PROCEEDINGS OF THE 15TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2017,
  • [23] Image-Based malware classification using ensemble of CNN architectures (IMCEC)
    Vasan, Danish
    Alazab, Mamoun
    Wassan, Sobia
    Safaei, Babak
    Zheng, Qin
    COMPUTERS & SECURITY, 2020, 92 (92)
  • [24] Combining CNN and Broad Learning for Music Classification
    Tang, Huan
    Chen, Ning
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (03): : 695 - 701
  • [25] Music Genre Classification using Deep Neural Networks
    Yimer, Mekonen Hiwot
    Yu, Yongbin
    Adu, Kwabena
    Favour, Ekong
    Liyih, Sinishaw Melikamu
    Patamia, Rutherford Agbeshi
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2384 - 2391
  • [26] Convolutional Neural Networks Approach for Music Genre Classification
    Cheng, Yu-Huei
    Chang, Pang-Ching
    Kuo, Che-Nan
    2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020), 2021, : 399 - 403
  • [27] Bangla Music Genre Classification Using Neural Network
    Al Mamunl, Md Afif
    Kadir, Imamul
    Rabby, A. k M. Shahariar Azad
    Al Azmi, Abdullah
    PROCEEDINGS OF THE 2019 8TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART-2019), 2019, : 397 - 403
  • [28] A FEATURE SELECTION APPROACH FOR AUTOMATIC MUSIC GENRE CLASSIFICATION
    Silla, Carlos N., Jr.
    Koerich, Alessandro L.
    Kaestner, Celso A. A.
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2009, 3 (02) : 183 - 208
  • [29] Statistical Classification of Vehicle Interior Sound Through Upsampling-Based Augmentation and Correction Using 1D CNN and LSTM
    Kim, Jinyoung
    Lee, Jongsoo
    IEEE ACCESS, 2022, 10 : 100615 - 100626
  • [30] Benchmark Analysis of Popular ImageNet Classification Deep CNN Architectures
    Muhammed, Mustafa Alghali Elsaid
    Ahmed, Ahmed Abdalazeem
    Khalid, Tarig Ahmed
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), 2017, : 902 - 907