Coordinate transformations and stabilization of some switched control systems with application to hydrostatic electrohydraulic servoactuators

被引:0
作者
Balea, S. [1 ]
Halanay, A. [2 ]
Ursu, I. [3 ]
机构
[1] Univ Politehn Bucuresti, Dept Math 2, Bucharest 060042, Romania
[2] Univ Politehn Bucuresti, Dept Math & Informat 1, Bucharest 040062, Romania
[3] Elie Carafoli Natl Inst Aerosp Res, Bucharest 061126, Romania
来源
CONTROL ENGINEERING AND APPLIED INFORMATICS | 2010年 / 12卷 / 03期
关键词
switched systems; Lyapunov stability; relative degree; local coordinates transformations; common Lyapunov function; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main result of the paper is a sufficient condition for existence of controllers that stabilize the zero solution for some switched nonlinear control systems in the critical case of a zero eigenvalue in the spectrum of the Jacobian matrix calculated in zero. The control synthesis is based on a condition on the relative degree in the equilibrium point and subsequent coordinates transformations. An application to a pump controlled electrohydraulic servoactuator is given.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 23 条
[1]  
BALEA S, APPL MATH S IN PRESS
[2]  
Balea S, 2009, MATH REP, V11, P279
[3]   Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J].
Branicky, MS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :475-482
[4]  
DRAGAN V, 1999, SYS CON FDN, P1, DOI 10.1007/978-1-4612-1570-7
[5]   Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions [J].
Gonçalves, JM ;
Megretski, A ;
Dahleh, MA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (12) :2089-2106
[6]  
Habibi Saeid, 2000, IEEE ASME T MECHATRO, V5
[7]   Stability of equilibria of some switched non-linear systems with applications to control synthesis for electrohydraulic servomechanisms [J].
Halanay, A. ;
Ursu, I. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (03) :361-373
[8]  
HALANAY A, 2010, MATH ANAL A IN PRESS
[9]  
Horn R.A., 2012, Matrix Analysis
[10]  
Isidori A, 1995, NONLINEAR CONTROL SYSTEMS DESIGN 1995, VOLS 1 AND 2, P87