LEIBNIZ ALGEBRAS WITH INVARIANT BILINEAR FORMS AND RELATED LIE ALGEBRAS

被引:6
|
作者
Benayadi, Said [1 ]
Hidri, Samiha [1 ,2 ]
机构
[1] Univ Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, France
[2] Fac Sci, Dept Math, Sfax BP, Tunisia
关键词
Double extension; Left (resp Right) invariant bilinear form; Leibniz algebra; Levi-Civita product; Pseudo-metric on Lie algebra; T*-extension; SUPERALGEBRAS;
D O I
10.1080/00927872.2015.1085550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In ([11]), we have studied quadratic Leibniz algebras that are Leibniz algebras endowed with symmetric, nondegenerate, and associative (or invariant) bilinear forms. The nonanticommutativity of the Leibniz product gives rise to other types of invariance for a bilinear form defined on a Leibniz algebra: the left invariance, the right invariance. In this article, we study the structure of Leibniz algebras endowed with nondegenerate, symmetric, and left (resp. right) invariant bilinear forms. In particular, the existence of such a bilinear form on a Leibniz algebra ? gives rise to a new algebra structureon the underlying vector space ?. In this article, we study this new algebra, and we give information on the structure of this type of algebras by using some extensions introduced in [11]. In particular, we improve the results obtained in [22].
引用
收藏
页码:3538 / 3556
页数:19
相关论文
共 50 条
  • [1] Non-degenerate Invariant Bilinear Forms on Leibniz Algebras
    Wang, Song
    Zhu, Linsheng
    ALGEBRA COLLOQUIUM, 2015, 22 (04) : 711 - 720
  • [2] Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms
    Benayadi, Said
    Makhlouf, Abdenacer
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 : 38 - 60
  • [3] Non-degenerate Invariant Bilinear Forms on Lie Color Algebras
    Wang, Song
    Zhu, Linsheng
    ALGEBRA COLLOQUIUM, 2010, 17 (03) : 365 - 374
  • [4] Leibniz algebras with pseudo-Riemannian bilinear forms
    Jie Lin
    Zhiqi Chen
    Frontiers of Mathematics in China, 2010, 5 : 103 - 115
  • [5] Leibniz algebras with pseudo-Riemannian bilinear forms
    Lin, Jie
    Chen, Zhiqi
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (01) : 103 - 115
  • [6] Invariant bilinear forms on Leibniz superalgebras
    Benayadi, Said
    Mhamdi, Fahmi
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (05)
  • [7] Non-degenerate Invariant (Super)Symmetric Bilinear Forms on Simple Lie (Super)Algebras
    Bouarroudj, Sofiane
    Krutov, Andrey
    Leites, Dimitry
    Shchepochkina, Irina
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (05) : 897 - 941
  • [8] Leibniz Algebras Constructed by Representations of General Diamond Lie Algebras
    Camacho, L. M.
    Karimjanov, I. A.
    Ladra, M.
    Omirov, B. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (03) : 1281 - 1293
  • [9] Leibniz Algebras Constructed by Representations of General Diamond Lie Algebras
    L. M. Camacho
    I. A. Karimjanov
    M. Ladra
    B. A. Omirov
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 1281 - 1293
  • [10] Leibniz algebras, Lie racks, and digroups
    Kinyon, Michael K.
    JOURNAL OF LIE THEORY, 2007, 17 (01) : 99 - 114