Recurrent laryngeal nerve regeneration using a self-assembling peptide hydrogel

被引:18
|
作者
Yoshimatsu, Masayoshi [1 ]
Nakamura, Ryosuke [1 ]
Kishimoto, Yo [1 ]
Yurie, Hirofumi [2 ]
Hayashi, Yasuyuki [1 ]
Kaba, Shinji [1 ]
Ohnishi, Hiroe [1 ]
Yamashita, Masaru [3 ]
Tateya, Ichiro [4 ]
Omori, Koichi [1 ]
机构
[1] Kyoto Univ, Grad Sch Med, Dept Otolaryngol Head & Neck Surg, Kyoto, Japan
[2] Kyoto Univ, Grad Sch Med, Dept Orthopaed Surg, Kyoto, Japan
[3] Shizuoka Prefectural Gen Hosp, Dept Otorhinolaryngol Head & Neck Surg, Shizuoka, Japan
[4] Fujita Hlth Univ, Sch Med, Dept Otolaryngol, 1-98 Dengakugakubo, Toyoake, Aichi 4701192, Japan
来源
LARYNGOSCOPE | 2020年 / 130卷 / 10期
基金
日本学术振兴会;
关键词
Vocal fold; paralysis; RADA16-I; peripheral nerve; regeneration; NANOFIBER SCAFFOLD; NEURITE OUTGROWTH; REPAIR; REINNERVATION; TUBE;
D O I
10.1002/lary.28434
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Objectives/Hypothesis To regenerate defected recurrent laryngeal nerves (RLNs), various methods have been developed. However, no consistently effective treatments are currently available because of their insufficient functional recovery. RADA16-I, a self-assembling peptide used clinically as a hemostat, reportedly supports neurite outgrowth and functional synapse formation in vitro. The purpose of this study was to investigate the effect of RADA16-I hydrogels on transected RLNs in rats. Study Design Animal experiments with controls. Methods Fifteen adult rats were divided into the following three groups: RADA16-I (+), RADA16-I (-), and neurectomy. A 6-mm gap of the left RLN was bridged using an 8-mm silicone tube in the RADA16-I (-) and RADA16-I (+) groups. Subsequently, RADA16-I hydrogel was injected into the tube in the RADA16-I (+) group. The surgical incisions were closed without any further treatment in the neurectomy group. After 8 weeks, laryngoscopy and electrophysiological and histological examinations were performed to evaluate the effect of RADA16-I on nerve regeneration and thyroarytenoid muscle atrophy. Results Although most rats in the three groups exhibited no improvements of their vocal fold movement, partial recovery was observed in one rat in the RADA16-I (+) group. The neurofilament-positive areas and the number of myelinated nerves in the RADA16-I (+) group were significantly higher than in the RADA16-I (-) group. The area of the left thyroarytenoid muscle in the RADA16-I (+) group was significantly larger than that of the neurectomy group. Conclusions Our results suggested that RADA16-I hydrogel was effective for RLN regeneration. Level of Evidence NA Laryngoscope, 2019
引用
收藏
页码:2420 / 2427
页数:8
相关论文
共 50 条
  • [31] Intraosseous Delivery of Bone Morphogenic Protein-2 Using a Self-Assembling Peptide Hydrogel
    Phipps, Matthew C.
    Monte, Felipe
    Mehta, Manav
    Kim, Harry K. W.
    BIOMACROMOLECULES, 2016, 17 (07) : 2329 - 2336
  • [32] Self-assembling peptide nanofiber hydrogels for central nervous system regeneration
    Xi LIU
    Bin PI
    Hui WANG
    XiuMei WANG
    Frontiers of Materials Science, 2015, 9 (01) : 1 - 13+109
  • [33] Self-assembling peptide nanofibrous hydrogel as a promising strategy in nerve repair after traumatic injury in the nervous system
    Zhang, Na
    He, Liumin
    Wu, Wutian
    NEURAL REGENERATION RESEARCH, 2016, 11 (05) : 717 - 718
  • [34] Self-assembling peptide nanofiber hydrogels for central nervous system regeneration
    Liu, Xi
    Pi, Bin
    Wang, Hui
    Wang, Xiu-Mei
    FRONTIERS OF MATERIALS SCIENCE, 2015, 9 (01) : 1 - 13
  • [35] Self-assembling peptide nanofibrous hydrogel as a promising strategy in nerve repair after traumatic injury in the nervous system
    Na Zhang
    Liumin He
    Wutian Wu
    Neural Regeneration Research, 2016, 11 (05) : 717 - 718
  • [36] REGENERATION OF THE RECURRENT LARYNGEAL NERVE
    CRUMLEY, RL
    MCCABE, BF
    OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 1982, 90 (04) : 442 - 447
  • [37] Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration
    Sun, Yuqiao
    Li, Wen
    Wu, Xiaoli
    Zhang, Na
    Zhang, Yongnu
    Ouyang, Songying
    Song, Xiyong
    Fang, Xinyu
    Seeram, Ramakrishna
    Xue, Wei
    He, Liumin
    Wu, Wutian
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) : 2348 - 2359
  • [38] Microfluidic 3-Dimensional Encapsulation System by Self-Assembling Peptide Hydrogel
    Kim, Minseok S.
    Park, Je-Kyun
    JALA - Journal of the Association for Laboratory Automation, 2006, 11 (06): : 352 - 359
  • [39] Sustained Release of Antimicrobial Peptide from Self-Assembling Hydrogel Enhanced Osteogenesis
    Yang, Guoli
    Huang, Tingben
    Wang, Ying
    Wang, Huiming
    Li, Yongzheng
    Yu, Ke
    Dong, Lingling
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2018, 29 (15) : 1812 - 1824
  • [40] Functionalized self-assembling peptide hydrogel enhance maintenance of hepatocyte activity in vitro
    Genove, Elsa
    Schmitmeier, Stephanie
    Sala, Ana
    Borros, Salvador
    Bader, Augustinus
    Griffith, Linda G.
    Semino, Carlos E.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2009, 13 (9B) : 3387 - 3397