Electrolyte Solvation Structure Design for Sodium Ion Batteries

被引:338
作者
Tian, Zhengnan [1 ]
Zou, Yeguo [2 ]
Liu, Gang [2 ]
Wang, Yizhou [1 ]
Yin, Jian [1 ]
Ming, Jun [2 ]
Alshareef, Husam N. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Mat Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
关键词
electrolytes; sodium ion batteries; solvation structure; LITHIUM-ION; SUPERCONCENTRATED ELECTROLYTES; ELECTROCHEMICAL INTERCALATION; NONFLAMMABLE ELECTROLYTE; MOLECULAR-DYNAMICS; ETHYLENE CARBONATE; METAL BATTERIES; ANODE MATERIALS; CYCLE LIFE; CATHODE;
D O I
10.1002/advs.202201207
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium ion batteries (SIBs) are considered the most promising battery technology in the post-lithium era due to the abundant sodium reserves. In the past two decades, exploring new electrolytes for SIBs has generally relied on the "solid electrolyte interphase (SEI)" theory to optimize the electrolyte components. However, many observed phenomena cannot be fully explained by the SEI theory. Therefore, electrolyte solvation structure and electrode-electrolyte interface behavior have recently received tremendous research interest to explain the improved performance. Considering there is currently no review paper focusing on the solvation structure of electrolytes in SIBs, a systematic survey on SIBs is provided, in which the specific solvation structure design guidelines and their consequent impact on the electrochemical performance are elucidated. The key driving force of solvation structure formation, and the recent advances in adjusting SIB solvation structures are discussed in detail. It is believed that this review can provide new insights into the electrolyte optimization strategies of high-performance SIBs and even other emerging battery systems.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Analysis of the Solid Electrolyte Interphase on Hard Carbon Electrodes in Sodium-Ion Batteries
    Carboni, Marco
    Manzi, Jessica
    Armstrong, Antony Robert
    Billaud, Juliette
    Brutti, Sergio
    Younesi, Reza
    CHEMELECTROCHEM, 2019, 6 (06) : 1745 - 1753
  • [22] Tuning the Electrolyte and Interphasial Chemistry for All-Climate Sodium-ion Batteries
    He, Mengxue
    Zhu, Lujun
    Ye, Guo
    An, Yun
    Hong, Xufeng
    Ma, Yue
    Xiao, Zhitong
    Jia, Yongfeng
    Pang, Quanquan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (21)
  • [23] High-Performance Sodium-Ion Batteries with Graphene: An Overview of Recent Developments and Design
    Kumar, Sachin Sharma Ashok
    Badawi, M. Nujud
    Liew, J.
    Prasankumar, Thibeorchews
    Ramesh, K.
    Ramesh, S.
    Ramesh, S.
    Tiong, S. K.
    CHEMSUSCHEM, 2025, 18 (02)
  • [24] Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries
    Cheng, Haoran
    Sun, Qujiang
    Li, Leilei
    Zou, Yeguo
    Wang, Yuqi
    Cai, Tao
    Zhao, Fei
    Liu, Gang
    Ma, Zheng
    Wahyudi, Wandi
    Li, Qian
    Ming, Jun
    ACS ENERGY LETTERS, 2022, 7 (01): : 490 - 513
  • [25] Advance and Prospect of Functional Materials for Sodium Ion Batteries
    Xiang Xingde
    Lu Yanying
    Chen Jun
    ACTA CHIMICA SINICA, 2017, 75 (02) : 154 - 162
  • [26] Recent advances of aqueous rechargeable lithium/sodium ion batteries: key electrode materials and electrolyte design strategies
    Lu, Menglu
    Yan, Yini
    Zheng, Yongquan
    Zhang, Wenkui
    He, Xinping
    Wu, Zhan
    Yang, Tianqi
    Xia, Xinhui
    Huang, Hui
    Xia, Yang
    Gan, Yongping
    Zhang, Jun
    MATERIALS TODAY ENERGY, 2023, 38
  • [27] Prospects in anode materials for sodium ion batteries - A review
    Perveen, Tahira
    Siddiq, Muhammad
    Shahzad, Nadia
    Ihsan, Rida
    Ahmad, Abrar
    Shahzad, Muhammad Imran
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 119
  • [28] Ion Association and Electrolyte Structure at Surface Films in Lithium-Ion Batteries
    Pinca, Justin R.
    Duborg, William G.
    Jorn, Ryan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (13) : 7054 - 7066
  • [29] Recent progress in the design of metal sulfides as anode materials for sodium ion batteries
    Liu, Yanzhen
    Yang, Chenghao
    Zhang, Qinyuan
    Liu, Meilin
    ENERGY STORAGE MATERIALS, 2019, 22 : 66 - 95
  • [30] Non-aqueous Liquid Electrolyte Additives for Sodium-Ion Batteries
    Hu, Xinhong
    Wang, Yirong
    Qiu, Yi
    Yu, Xuan
    Shi, Qinhao
    Liu, Yiming
    Feng, Wuliang
    Zhao, Yufeng
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (04)