Efficient Graph Collaborative Filtering via Contrastive Learning

被引:5
作者
Pan, Zhiqiang [1 ]
Chen, Honghui [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Informat Syst Engn Lab, Changsha 410073, Peoples R China
关键词
recommender systems; efficient recommendation; collaborative filtering; graph convolution networks; contrastive learning;
D O I
10.3390/s21144666
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Collaborative filtering (CF) aims to make recommendations for users by detecting user's preference from the historical user-item interactions. Existing graph neural networks (GNN) based methods achieve satisfactory performance by exploiting the high-order connectivity between users and items, however they suffer from the poor training efficiency problem and easily introduce bias for information propagation. Moreover, the widely applied Bayesian personalized ranking (BPR) loss is insufficient to provide supervision signals for training due to the extremely sparse observed interactions. To deal with the above issues, we propose the Efficient Graph Collaborative Filtering (EGCF) method. Specifically, EGCF adopts merely one-layer graph convolution to model the collaborative signal for users and items from the first-order neighbors in the user-item interactions. Moreover, we introduce contrastive learning to enhance the representation learning of users and items by deriving the self-supervisions, which is jointly trained with the supervised learning. Extensive experiments are conducted on two benchmark datasets, i.e., Yelp2018 and Amazon-book, and the experimental results demonstrate that EGCF can achieve the state-of-the-art performance in terms of Recall and normalized discounted cumulative gain (NDCG), especially on ranking the target items at right positions. In addition, EGCF shows obvious advantages in the training efficiency compared with the competitive baselines, making it practicable for potential applications.
引用
收藏
页数:17
相关论文
共 40 条
[1]  
[Anonymous], 2018, P INT C LEARN REPR I
[2]  
Chen C, 2020, AAAI CONF ARTIF INTE, V34, P19
[3]   Efficient Neural Matrix Factorization without Sampling for Recommendation [J].
Chen, Chong ;
Min, Zhang ;
Zhang, Yongfeng ;
Liu, Yiqun ;
Ma, Shaoping .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (02)
[4]   Attentive Collaborative Filtering: Multimedia Recommendation with Item- and Component-Level Attention [J].
Chen, Jingyuan ;
Zhang, Hanwang ;
He, Xiangnan ;
Nie, Liqiang ;
Liu, Wei ;
Chua, Tat-Seng .
SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, :335-344
[5]  
Chen T, 2020, PR MACH LEARN RES, V119
[6]  
Glorot X., 2010, P 13 INT C ART INT S, P249
[7]  
He RN, 2016, AAAI CONF ARTIF INTE, P144
[8]   LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation [J].
He, Xiangnan ;
Deng, Kuan ;
Wang, Xiang ;
Li, Yan ;
Zhang, Yongdong ;
Wang, Meng .
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, :639-648
[9]   NAIS: Neural Attentive Item Similarity Model for Recommendation [J].
He, Xiangnan ;
He, Zhankui ;
Song, Jingkuan ;
Liu, Zhenguang ;
Jiang, Yu-Gang ;
Chua, Tat-Seng .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (12) :2354-2366
[10]   Neural Collaborative Filtering [J].
He, Xiangnan ;
Liao, Lizi ;
Zhang, Hanwang ;
Nie, Liqiang ;
Hu, Xia ;
Chua, Tat-Seng .
PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), 2017, :173-182