Local existence with low regularity for the 2D compressible Euler equations

被引:2
作者
Zhang, Huali [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Sci & Stat, Wanjiali South Rd 960, Changsha 410114, Peoples R China
基金
中国国家自然科学基金; 瑞典研究理事会;
关键词
Compressible Euler equations; low regularity; wave-transport system; hyperbolic system; LINEAR WAVE-EQUATIONS; WELL-POSEDNESS; NONSMOOTH COEFFICIENTS; ROUGH SOLUTIONS; OPERATORS;
D O I
10.1142/S0219891621500211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the local existence, uniqueness and stability of local solutions for the Cauchy problem of two-dimensional compressible Euler equations, where the initial data of velocity, density, specific vorticity v, rho, W is an element of H-s(s > 7 4) and the spatial derivative of specific vorticity partial derivative W is an element of L-infinity(x).
引用
收藏
页码:701 / 728
页数:28
相关论文
共 28 条
[1]   Local Well-Posedness for Membranes in the Light Cone Gauge [J].
Allen, Paul T. ;
Andersson, Lars ;
Restuccia, Alvaro .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (02) :383-410
[2]   Elliptic-hyperbolic systems and the Einstein equations [J].
Andersson, L ;
Moncrief, V .
ANNALES HENRI POINCARE, 2003, 4 (01) :1-34
[3]   Quasilinear wave equations and Strichartz estimations [J].
Bahouri, H ;
Chemin, JY .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (06) :1337-1377
[4]  
Bahouri H, 1999, INT MATH RES NOTICES, V1999, P1141
[5]  
Bourgain J., 2021, INT MATH RES NOT, V1, P1
[6]   Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces [J].
Bourgain, Jean ;
Li, Dong .
INVENTIONES MATHEMATICAE, 2015, 201 (01) :97-157
[7]  
Christodoulou D., 2007, FORMATION SHOCKS 3 D
[8]  
Disconzi M. M., 2019, ARXIV190902550V1
[9]   A sharp counterexample to local existence of low regularity solutions to Einstein equations in wave coordinates [J].
Ettinger, Boris ;
Lindblad, Hans .
ANNALS OF MATHEMATICS, 2017, 185 (01) :311-330
[10]   A local well-posedness result for the quasilinear wave equation in R2+1 [J].
Geba, DA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (3-4) :323-360