Martin boundary of a killed random walk on a half-space

被引:16
作者
Ignatiouk-Robert, Irina [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
Martin boundary; sample path large deviations; random walk;
D O I
10.1007/s10959-007-0100-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A complete representation of the Martin boundary of killed random walks on a half-space Z(d-1) x N-* is obtained. In particular, it is proved that the corresponding Martin boundary is homemorphic to the half-sphere S-+(d) = {z epsilon Rd-1 x R+ :vertical bar z vertical bar = 1}. The method is based on a combination of ratio limits theorems and large deviation techniques.
引用
收藏
页码:35 / 68
页数:34
相关论文
共 24 条
[11]   Bridges and networks: Exact asymptotics [J].
Foley, RD ;
McDonald, DR .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (1B) :542-586
[12]  
Hennequin P.- L., 1963, ANN I H POINCARE, V18, P109
[13]  
Hunt G.A., 1960, ILLINOIS J MATH, V4, P313, DOI DOI 10.1215/IJM/1255456049
[14]  
Ignatiouk-Robert I, 2001, ANN APPL PROBAB, V11, P1292
[15]  
IGNATIOUKROBERT I, 2006, MARTIN BOUNDARY REFL
[16]  
KOURKOVA I. A., 1998, MARKOV PROCESS RELAT, V4, P203
[17]   Minimal positive harmonic functions [J].
Martin, Robert S. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 49 (1-3) :137-172
[18]  
MCDONALD DR, 1979, THEOR PROBAB APPL+, V24, P613
[19]   MARTIN BOUNDARY FOR RANDOM WALK [J].
NEY, P ;
SPITZER, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (01) :116-&
[20]  
Rockafellar RT, 1997, CONVEX ANAL