Martin boundary of a killed random walk on a half-space

被引:16
作者
Ignatiouk-Robert, Irina [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
Martin boundary; sample path large deviations; random walk;
D O I
10.1007/s10959-007-0100-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A complete representation of the Martin boundary of killed random walks on a half-space Z(d-1) x N-* is obtained. In particular, it is proved that the corresponding Martin boundary is homemorphic to the half-sphere S-+(d) = {z epsilon Rd-1 x R+ :vertical bar z vertical bar = 1}. The method is based on a combination of ratio limits theorems and large deviation techniques.
引用
收藏
页码:35 / 68
页数:34
相关论文
共 24 条
[1]   Martin boundaries associated with a killed random walk [J].
Alili, L ;
Doney, RA .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (03) :313-338
[2]  
[Anonymous], 2011, APPL MATH
[3]  
[Anonymous], 1969, RUSS MATH SURV+
[4]  
[Anonymous], REAL COMPLEX ANAL
[5]  
BILLINGSLEY P, 1968, WILEY SERIES PROBAIL
[6]  
BOROVKOV AA, 1992, SIBERIAN MATH J, V33, P745
[7]  
CARTIER P, 1972, S MATH, V9, P203
[8]   An elementary proof of the local central limit theorem [J].
Davis, B ;
McDonald, D .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (03) :693-701
[9]   The Martin boundary and ratio limit theorems for killed random walks [J].
Doney, RA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :761-768
[10]  
DOOB JL, 1959, J MATH MECH, V8, P433