CONSERVATION LAWS OF THE TIME-FRACTIONAL ZAKHAROV-KUZNETSOV-BURGERS EQUATION

被引:0
作者
Naderifard, Azadeh [1 ]
Hejazi, S. Reza [1 ]
Dastranj, Elham [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Semnan, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2020年 / 44卷 / 01期
关键词
Generalized Zakharov-Kuznetsov-Burgers equation; Riemann Liouviile derivative; Caputo fractional derivative; Lie point symmetry; fractional conservation laws; NONLINEAR SCHRODINGER-EQUATION; LIE SYMMETRY ANALYSIS; SELF-ADJOINTNESS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An important application of Lie group theory of differential equations is applied to study conservation laws of time-fractional Zakharov-Kuznetsov-Burgers (ZKB) equation with Riemann-Liouville and Caputo derivatives. This analysis is based on a modified version of Noether's theorem provided by Ibragimov to construct the conserved vectors of the equation. This is done by non-linearly self-adjointness of the equation which will be stated via a formal Lagrangian in the sequel.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 50 条
  • [31] Group classification, invariant solutions and conservation laws of nonlinear orthotropic two-dimensional filtration equation with the Riemann-Liouville time-fractional derivative
    Lukashchuk, V. O.
    Lukashchuk, S. Yu
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2020, 24 (02): : 226 - 248
  • [32] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [33] Invariance properties and conservation laws of perturbed fractional wave equation
    Lashkarian, Elham
    Motamednezhad, Ahmad
    Hejazi, S. Reza
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (06)
  • [34] TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES
    Gorenflo, Rudolf
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 799 - 820
  • [35] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820
  • [36] A Local Discontinuous Galerkin Method for Time-Fractional Burgers Equations
    Yuan, Wenping
    Chen, Yanping
    Huang, Yunqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 818 - 837
  • [37] Fundamental solutions and conservation laws for conformable time fractional partial differential equation
    Cheng, Xiaoyu
    Wang, Lizhen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [38] Numerical solution of nonlinear fractional Zakharov–Kuznetsov equation arising in ion-acoustic waves
    Amit Prakash
    Vijay Verma
    Pramana, 2019, 93
  • [39] Lie Symmetry Analysis, Analytical Solution, and Conservation Laws of a Sixth-Order Generalized Time-Fractional Sawada-Kotera Equation
    Wang, Yuhang
    Li, Lianzhong
    SYMMETRY-BASEL, 2019, 11 (12):
  • [40] Symmetry analysis, conservation laws and exact soliton solutions for the (n+1)-dimensional modified Zakharov-Kuznetsov equation in plasmas with magnetic fields
    Hussain, Akhtar
    Abbas, Naseem
    Ibrahim, Tarek F.
    Birkea, Fathea M. Osman
    Al-Sinan, Bushra R.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (08)