CONSERVATION LAWS OF THE TIME-FRACTIONAL ZAKHAROV-KUZNETSOV-BURGERS EQUATION

被引:0
作者
Naderifard, Azadeh [1 ]
Hejazi, S. Reza [1 ]
Dastranj, Elham [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Semnan, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2020年 / 44卷 / 01期
关键词
Generalized Zakharov-Kuznetsov-Burgers equation; Riemann Liouviile derivative; Caputo fractional derivative; Lie point symmetry; fractional conservation laws; NONLINEAR SCHRODINGER-EQUATION; LIE SYMMETRY ANALYSIS; SELF-ADJOINTNESS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An important application of Lie group theory of differential equations is applied to study conservation laws of time-fractional Zakharov-Kuznetsov-Burgers (ZKB) equation with Riemann-Liouville and Caputo derivatives. This analysis is based on a modified version of Noether's theorem provided by Ibragimov to construct the conserved vectors of the equation. This is done by non-linearly self-adjointness of the equation which will be stated via a formal Lagrangian in the sequel.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 39 条
[1]  
Das S., 2008, Functional Fractional Calculus for System Identification and Controls
[2]   Zakharov-Kuznetsov-Burgers equation in superthermal electron-positron-ion plasma [J].
El-Bedwehy, N. A. ;
Moslem, W. M. .
ASTROPHYSICS AND SPACE SCIENCE, 2011, 335 (02) :435-442
[3]   Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations [J].
Gazizov, R. K. ;
Ibragimov, N. H. ;
Lukashchuk, S. Yu. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 23 (1-3) :153-163
[4]   Group-Invariant Solutions of Fractional Differential Equations [J].
Gazizov, R. K. ;
Kasatkin, A. A. ;
Lukashchuk, S. Y. .
NONLINEAR SCIENCE AND COMPLEXITY, 2011, :51-59
[5]   Benjamin-Feir instability in nonlinear dispersive waves [J].
Helal, M. A. ;
Seadawy, A. R. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (11) :3557-3568
[6]  
Hilfer R., 2000, APPL FRACTIONAL CALC
[7]   A new conservation theorem [J].
Ibragimov, Nail H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :311-328
[8]  
Ibragimov NH, 2011, J PHYS A, V44, P1
[9]   Nonnegative solutions of fractional functional differential equations [J].
Jiang, Yao-Lin ;
Ding, Xiao-Li .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (05) :896-904
[10]  
Kilbas A., 2006, THEORY APPL FRACTION, DOI 10.1016/S0304-0208(06)80001-0