Co0.85Se@C/Ti3C2Tx MXene hybrids as anode materials for lithium-ion batteries

被引:29
作者
Ding, Wen [1 ]
Wang, Shuo [1 ]
Wu, Xiaozhong [1 ]
Wang, Yesheng [1 ]
Li, Yanyan [1 ]
Zhou, Pengfei [1 ]
Zhou, Tong [2 ]
Zhou, Jin [1 ]
Zhuo, Shuping [1 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Peoples R China
[2] Shandong Univ Technol, Sch Phys & Optoelect Engn, Lab Funct Mol & Mat, Zibo 255049, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Anode material; Co0.85Se; Ti(3)C(2)T(x)MXene; Volumetric capacity; FREE COUNTER ELECTRODE; VOLUMETRIC-CAPACITY; TITANIUM CARBIDE; STORAGE; LI; GRAPHENE; PERFORMANCE; COMPOSITES; NANOPARTICLES; NANOSHEETS;
D O I
10.1016/j.jallcom.2019.152566
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The volumetric capacity plays a critical role in lithium-ion batteries (LIBs) on account of the restrictive electrode material. Herein we report a novel electrode material of Co0.85Se@C/Ti3C2Tx MXene hybrids (CSTC5) with high volumetric capacities are prepared by ultrasonication of Ti3C2Tx MXene and Co0.85Se@C nanoparticles. These samples are systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. The electrochemical performance of these samples as anode materials for LIBs are also studied. Owing to the opened two-dimensional structure, good electrochemical property, and weak Li+ diffusion resistance, these materials exhibit good electrochemical properties. The CSTC3 sample delivers the maximum reversible capacity, up to 700 mA h g(-1) at 0.1 A g(-1), corresponding to a very high volumetric capacity of 2044 mA h cm(-3) due to its high compact density. This hybrid is considered to be a promising anode material in small-size wearable or portable electronic devices. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 61 条
[1]   H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Hedhili, Mohamed N. ;
Gogotsi, Yury ;
Alshareef, Husam N. .
NANOSCALE, 2016, 8 (14) :7580-7587
[2]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[3]   Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes [J].
Bhandavat, R. ;
David, L. ;
Singh, G. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (11) :1523-1530
[4]   MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries [J].
Chen, Chi ;
Xie, Xiuqiang ;
Anasori, Babak ;
Sarycheva, Asya ;
Makaryan, Taron ;
Zhao, Mengqiang ;
Urbankowski, Patrick ;
Miao, Ling ;
Jiang, Jianjun ;
Gogotsi, Yury .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (07) :1846-1850
[5]   MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes [J].
David, Lamuel ;
Bhandavat, Romil ;
Singh, Gurpreet .
ACS NANO, 2014, 8 (02) :1759-1770
[6]   Graphene-Wrapped CoS Nanoparticles for High-Capacity Lithium-Ion Storage [J].
Gu, Yan ;
Xu, Yi ;
Wang, Yong .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (03) :801-806
[7]   Graphene: A Two-Dimensional Platform for Lithium Storage [J].
Han, Sheng ;
Wu, Dongqing ;
Li, Shuang ;
Zhang, Fan ;
Feng, Xinliang .
SMALL, 2013, 9 (08) :1173-1187
[8]   MoS2 Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials [J].
Hwang, Haesuk ;
Kim, Hyejung ;
Cho, Jaephil .
NANO LETTERS, 2011, 11 (11) :4826-4830
[9]   Co0.85Se hollow nanoparticles as Pt-free counter electrode materials for dye-sensitized solar cells [J].
Jiang, Qingsong ;
Hu, Guang .
MATERIALS LETTERS, 2015, 153 :114-117
[10]   Enhanced Li-Ion Accessibility in MXene Titanium Carbide by Steric Chloride Termination [J].
Kajiyama, Satoshi ;
Szabova, Lucie ;
Iinuma, Hiroki ;
Sugahara, Akira ;
Gotoh, Kazuma ;
Sodeyama, Keitaro ;
Tateyama, Yoshitaka ;
Okubo, Masashi ;
Yamada, Atsuo .
ADVANCED ENERGY MATERIALS, 2017, 7 (09)