Evaluation of Potential Evapotranspiration Based on CMADS Reanalysis Dataset over China

被引:19
作者
Tian, Ye [1 ]
Zhang, Kejun [1 ]
Xu, Yue-Ping [2 ]
Gao, Xichao [3 ]
Wang, Jie [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Hydrol & Water Resources, Nanjing 210044, Jiangsu, Peoples R China
[2] Zhejiang Univ, Inst Hydrol & Water Resources, Dept Civil Engn, Hangzhou 310058, Zhejiang, Peoples R China
[3] China Inst Water Resources & Hydropower Res, Beijing 100038, Peoples R China
基金
中国国家自然科学基金;
关键词
potential evapotranspiration; Penman-Monteith; CMADS; China; CROP COEFFICIENT; ERA-INTERIM; NCEP-NCAR; MODELS; IMPACT; EVAPORATION; SENSITIVITY; PERFORMANCE; PARAMETERS; EFFICIENCY;
D O I
10.3390/w10091126
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Potential evapotranspiration (PET) is used in many hydrological models to estimate actual evapotranspiration. The calculation of PET by the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith method requires data for several meteorological variables that are often unavailable in remote areas. The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) reanalysis datasets provide an alternative to the use of observed data. This study evaluates the use of CMADS reanalysis datasets in estimating PET across China by the Penman-Monteith equation. PET estimates from CMADS data (PET_cma) during the period 2008-2016 were compared with those from observed data (PET_obs) from 836 weather stations in China. Results show that despite PET_cma overestimating average annual PET and average seasonal in some areas (in comparison to PET_obs), PET_cma well matches PET_obs overall. Overestimation of average annual PET occurs mainly for western inland China. There are more meteorological stations in southeastern China for which PET_cma is a large overestimate, with percentage bias ranging from 15% to 25% for spring but a larger overestimate in the south and underestimate in the north for the winter. Wind speed and solar radiation are the climate variables that contribute most to the error in PET_cma. Wind speed causes PET to be underestimated with percentage bias in the range -15% to -5% for central and western China whereas solar radiation causes PET to be overestimated with percentage bias in the range 15% to 30%. The underestimation of PET due to wind speed is offset by the overestimation due to solar radiation, resulting in a lower overestimation overall.
引用
收藏
页数:17
相关论文
共 66 条
  • [1] AN INTRODUCTION TO THE EUROPEAN HYDROLOGICAL SYSTEM - SYSTEME HYDROLOGIQUE EUROPEEN, SHE .1. HISTORY AND PHILOSOPHY OF A PHYSICALLY-BASED, DISTRIBUTED MODELING SYSTEM
    ABBOTT, MB
    BATHURST, JC
    CUNGE, JA
    OCONNELL, PE
    RASMUSSEN, J
    [J]. JOURNAL OF HYDROLOGY, 1986, 87 (1-2) : 45 - 59
  • [2] Allen R. G., 1998, FAO Irrigation and Drainage Paper
  • [3] Worldwide assessment of the Penman-Monteith temperature approach for the estimation of monthly reference evapotranspiration
    Almorox, Javier
    Senatore, Alfonso
    Quej, Victor H.
    Mendicino, Giuseppe
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2018, 131 (1-2) : 693 - 703
  • [4] Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models
    Andréassian, V
    Perrin, C
    Michel, C
    [J]. JOURNAL OF HYDROLOGY, 2004, 286 (1-4) : 19 - 35
  • [5] Large area hydrologic modeling and assessment - Part 1: Model development
    Arnold, JG
    Srinivasan, R
    Muttiah, RS
    Williams, JR
    [J]. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 1998, 34 (01): : 73 - 89
  • [6] Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against Independent Sounding Observations over the Tibetan Plateau
    Bao, Xinghua
    Zhang, Fuqing
    [J]. JOURNAL OF CLIMATE, 2013, 26 (01) : 206 - 214
  • [7] Evaluation of the NCEP-NCAR and ECMWF 15- and 40-Yr Reanalyses using rawinsonde data from two independent Arctic field experiments
    Bromwich, DH
    Wang, SH
    [J]. MONTHLY WEATHER REVIEW, 2005, 133 (12) : 3562 - 3578
  • [8] Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956-2000
    Gao G.
    Chen D.
    Ren G.
    Chen Y.
    Liao Y.
    [J]. Journal of Geographical Sciences, 2006, 16 (1) : 3 - 12
  • [9] Application of SWAT Model with CMADS Data to Estimate Hydrological Elements and Parameter Uncertainty Based on SUFI-2 Algorithm in the Lijiang River Basin, China
    Cao, Yang
    Zhang, Jing
    Yang, Mingxiang
    Lei, Xiaohui
    Guo, Binbin
    Yang, Liu
    Zeng, Zhiqiang
    Qu, Jiashen
    [J]. WATER, 2018, 10 (06)
  • [10] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597