A free boundary problem arising in a model of wound healing

被引:143
作者
Chen, XF [1 ]
Friedman, A
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
free boundary; reaction-diffusion equations; travelling wave solutions; wound healing;
D O I
10.1137/S0036141099351693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a system of two semilinear parabolic reaction-diffusion equations with a free boundary, which arises in a model of corneal epithelial wound healing. We prove that the initial-boundary value problem has a unique solution and that complete healing is achieved in finite time. We then proceed to consider travelling wave solutions of the same system and establish the existence of such a solution.
引用
收藏
页码:778 / 800
页数:23
相关论文
共 7 条
[1]   MATHEMATICAL-MODELING OF CORNEAL EPITHELIAL WOUND-HEALING [J].
DALE, PD ;
MAINI, PK ;
SHERRATT, JA .
MATHEMATICAL BIOSCIENCES, 1994, 124 (02) :127-147
[2]  
Gaffney EA, 1999, IMA J MATH APPL MED, V16, P369
[3]  
LADYZHENSKAJA DA, 1968, LINEAR QUASILINEAR E
[4]   A MECHANOCHEMICAL MODEL FOR ADULT DERMAL WOUND CONTRACTION AND THE PERMANENCE OF THE CONTRACTED TISSUE DISPLACEMENT PROFILE [J].
OLSEN, L ;
SHERRATT, JA ;
MAINI, PK .
JOURNAL OF THEORETICAL BIOLOGY, 1995, 177 (02) :113-128
[5]  
Olsen L, 1997, IMA J MATH APPL MED, V14, P261
[6]   Spatially varying equilibria of mechanical models: Application to dermal wound contraction [J].
Olsen, L ;
Maini, PK ;
Sherratt, JA .
MATHEMATICAL BIOSCIENCES, 1998, 147 (01) :113-129
[7]  
Olsen L., 1998, Computational and Mathematical Methods in Medicine, V1, P175, DOI DOI 10.1080/10273669808833018