Birds Detection in Natural Scenes Based on Improved Faster RCNN

被引:12
作者
Xiang, Wenbin [1 ,2 ]
Song, Ziying [2 ,3 ]
Zhang, Guoxin [4 ]
Wu, Xuncheng [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Shanghai 201620, Peoples R China
[2] Tsinghua Univ, Sch Vehicle & Mobil, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[3] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
[4] Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 12期
基金
中国国家自然科学基金;
关键词
deep residual network; faster RCNN model; multi-scale fusion; soft non-maximum suppression; OBJECT DETECTION;
D O I
10.3390/app12126094
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To realize the accurate detection of small-scale birds in natural scenes, this paper proposes an improved Faster RCNN model to detect bird species. Firstly, the model uses a depth residual network to extract convolution features and performs multi-scale fusion for feature maps of different convolutional layers. Secondly, the K-means clustering algorithm is used to cluster the bounding boxes. We improve the anchoring according to the clustering results. The improved anchor frame tends toward the real bounding box of the dataset. Finally, the Soft Non-Maximum Suppression method is used to reduce the missed detection of overlapping birds. Compared with the original model, the improved model has faster effect and higher accuracy.
引用
收藏
页数:11
相关论文
共 32 条
  • [1] [Anonymous], 2018, P IEEE C COMPUTER VI
  • [2] Soft-NMS - Improving Object Detection With One Line of Code
    Bodla, Navaneeth
    Singh, Bharat
    Chellappa, Rama
    Davis, Larry S.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5562 - 5570
  • [3] Cao YH, 2020, PROC CVPR IEEE, P11580, DOI 10.1109/CVPR42600.2020.01160
  • [4] Chauhan R, 2018, 2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), P278, DOI 10.1109/ICSCCC.2018.8703316
  • [5] Recognition of Human Face Regions under Adverse Conditions-Face Masks and Glasses-In Thermographic Sanitary Barriers through Learning Transfer from an Object Detector
    da Silva, Joabe R.
    de Almeida, Gustavo M.
    Cuadros, Marco Antonio de S. L.
    Campos, Hercules L. M.
    Nunes, Reginaldo B.
    Simao, Josemar
    Muniz, Pablo R.
    [J]. MACHINES, 2022, 10 (01)
  • [6] Fei-Fei L, 2009, J VISUAL-JAPAN, V9, P1037, DOI DOI 10.1167/9.8.1037
  • [7] Guo CX, 2020, PROC CVPR IEEE, P12592, DOI 10.1109/CVPR42600.2020.01261
  • [8] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [9] Learning non-maximum suppression
    Hosang, Jan
    Benenson, Rodrigo
    Schiele, Bernt
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6469 - 6477
  • [10] An automated detection and classification of citrus plant diseases using image processing techniques: A review
    Iqbal, Zahid
    Khan, Muhammad Attique
    Sharif, Muhammad
    Shah, Jamal Hussain
    Rehman, Muhammad Habib Ur
    Javed, Kashif
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 153 : 12 - 32