PHBV and predifferentiated human adipose-derived stem cells for cartilage tissue engineering

被引:46
|
作者
Liu, Jiong [5 ]
Zhao, Bin [5 ]
Zhang, Yunqiang [5 ]
Lin, Yunfeng [4 ]
Hu, Ping [3 ]
Ye, Chuan [1 ,2 ]
机构
[1] Guiyang Med Coll, Affiliated Hosp, MianHuaTang Orthopaed Bioengn Lab, Guiyang 550004, Peoples R China
[2] Guiyang Med Coll, Affiliated Hosp, Dept Orthopaed, Guiyang 550004, Peoples R China
[3] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[4] Sichuan Univ, Dept Oral & Maxillofacial Surg, W China Coll Stomatol, Chengdu 610041, Peoples R China
[5] Fourth Peoples Hosp Guiyang, Dept Orthopaed, Guiyang 550003, Peoples R China
关键词
adipose-derived stem cells; PHBV; chondrogenic differentiation; tissue engineering; cartilage; FEMORAL-HEAD CARTILAGE; IN-VITRO; ARTICULAR-CARTILAGE; REGENERATIVE MEDICINE; GENE-EXPRESSION; DIFFERENTIATION; CHONDROCYTES; REPAIR; ACID; DEGRADATION;
D O I
10.1002/jbm.a.32730
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study was conducted to investigate whether in vitro chondrogenic differentiated human adipose-derived stem cells (hASCs) can maintain the chondrogenic phenotype in (3-hydroxybutrate-co-3-hydroxyvalerate) (PHBV) scaffolds and whether differentiated hASCs/PHBV construct can produce neocartilage in a heterotopic animal model. hASCs were cultured with or without chondrogenic media in vitro and then seeded on PHBV foams. Differentiated cell/PHBV constructs were subcutaneously implanted in nude mice for 8 or 16 weeks; nondifferentiated cell/PHBV constructs were implanted in the control group. The results in the control group showed no cartilage formation and the disappearance of the scaffold at 8 weeks. Conversely, all differentiated hASCs/PHBV implants kept their original shape throughout 16 weeks. These implants at 16 weeks had stronger chondrocytes-specific histo-chemical staining than those at 8 weeks, with GAG, total collagen, and compressive moduli increased with implantation time. Cartilage lacunae were observed in all retrieved implants at 16 weeks. The chondrocytes-specific genes were detected by RT-PCR at 16 weeks. The remnants of PHBV were observed in the implants throughout 16 weeks. This study demonstrates that chondrogenic predifferentiated hASCs have the ability to maintain a chondrogenic phenotype in PHBV and that cell/PHBV constructs can produce neocartilage in a heterotopic site, but the degradation rates of PHBV in different environments needs more investigation. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 94A: 603-610,2010
引用
收藏
页码:603 / 610
页数:8
相关论文
共 50 条
  • [1] A composite of human adipose-derived extracellular matrix and adipose-derived stem cells for cartilage tissue engineering
    Choi, J. S.
    Kim, J. D.
    Kim, E. J.
    Cho, Y. W.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 176 - 177
  • [2] Adipose-derived adult stem cells for cartilage tissue engineering
    Guilak, F
    Awad, HA
    Fermor, B
    Leddy, HA
    Gimble, JM
    BIORHEOLOGY, 2004, 41 (3-4) : 389 - 399
  • [3] PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering
    Ye, Chuan
    Hu, Ping
    Ma, Min-Xian
    Xiang, Yang
    Liu, Ri-Guang
    Shang, Xian-Wen
    BIOMATERIALS, 2009, 30 (26) : 4401 - 4406
  • [4] Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering
    Merceron, Christophe
    Vinatier, Claire
    Clouet, Johann
    Colliec-Jouault, Sylvia
    Weiss, Pierre
    Guicheux, Jerome
    JOINT BONE SPINE, 2008, 75 (06) : 672 - 674
  • [5] Predifferentiated Smooth Muscle-Like Adipose-Derived Stem Cells for Bladder Engineering
    Smolar, Jakub
    Horst, Maya
    Salemi, Souzan
    Eberli, Daniel
    TISSUE ENGINEERING PART A, 2020, 26 (17-18) : 979 - 992
  • [6] In Vitro Cartilage Tissue Engineering Using Adipose-Derived Extracellular Matrix Scaffolds Seeded with Adipose-Derived Stem Cells
    Choi, Ji Suk
    Kim, Beob Soo
    Kim, Jae Dong
    Choi, Young Chan
    Lee, Hee Young
    Cho, Yong Woo
    TISSUE ENGINEERING PART A, 2012, 18 (1-2) : 80 - 92
  • [7] The suitability of human adipose-derived stem cells for the engineering of ligament tissue
    Eagan, Michael J.
    Zuk, Patricia A.
    Zhao, Ke-Wei
    Bluth, Benjamin E.
    Brinkmann, Elyse J.
    Wu, Benjamin M.
    McAllister, David R.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 (09) : 702 - 709
  • [8] Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering
    Julien Colle
    Phillip Blondeel
    Axelle De Bruyne
    Silke Bochar
    Liesbeth Tytgat
    Chris Vercruysse
    Sandra Van Vlierberghe
    Peter Dubruel
    Heidi Declercq
    Journal of Materials Science: Materials in Medicine, 2020, 31
  • [9] Regenerative Engineering of Cartilage Using Adipose-Derived Stem Cells
    Kasir R.
    Vernekar V.N.
    Laurencin C.T.
    Regenerative Engineering and Translational Medicine, 2015, 1 (1-4) : 42 - 49
  • [10] Adipose-Derived Stem Cells and Periodontal Tissue Engineering
    Tobita, Morikuni
    Mizuno, Hiroshi
    INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2013, 28 (06) : E487 - E493