Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid

被引:82
作者
Tahani, M. [1 ]
Vakili, M. [2 ]
Khosrojerdi, S. [3 ]
机构
[1] Univ Tehran, Fac New Sci & Technol, Tehran, Iran
[2] Iran Univ Sci & Technol, Dept Mech Engn, Tehran, Iran
[3] Islamic Azad Univ, Cent Tehran Branch, Young Researchers & Elite Club, Tehran, Iran
关键词
Thermal conductivity; Artificial neural network; Nanofluid; Graphene oxide; Modeling; ARTIFICIAL NEURAL-NETWORK; HEAT-TRANSFER; ELECTRICAL-CONDUCTIVITY; SOLAR COLLECTOR; SUSPENSIONS; PREDICTION; POLLUTION; FLOW;
D O I
10.1016/j.icheatmasstransfer.2016.06.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this research study, the thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid is studied in different temperatures and weight fractions using artificial neural network (ANN) and experimental data. For the purpose of training the ANN, the thermal conductivity of nanofluid is measured in temperatures between 25 and 50 degrees C and weight fractions equal to 0.001, 0.005, 0.015 and 0.045. For the purpose of evaluating the accuracy of the proposed model by ANN, root mean square error (RMSE), R-2 and also mean absolute percentage error (MAPE) are utilized. The best ANN model has two hidden layers and one output layer and also utilizes tansig, logsig and pureline functions and the number of neurons is 4-8-1 in the mentioned layers respectively. The inputs of the ANN model are weight fraction and nanofluid temperature and the output of the network is the thermal conductivity of the nanofluid. The results indicate that the proposed model by ANN can precisely predict the thermal conductivity of the nanofluid. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:358 / 365
页数:8
相关论文
共 36 条
[21]   Investigation on crystallization of TiO2-water nanofluids and deionized water [J].
Mo, Songping ;
Chen, Ying ;
Jia, Lisi ;
Luo, Xianglong .
APPLIED ENERGY, 2012, 93 :65-70
[22]   Thermal Conductivity Prediction of Pure Liquids Using Multi-Layer Perceptron Neural Network [J].
Najafi, Alireza ;
Hamzehie, Mohammad Ehsan ;
Najibi, Hesam ;
Soleimani, Mohammad ;
Van Gerven, Tom ;
Van der Bruggen, Bart ;
Mazinani, Saeed .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2015, 29 (01) :197-202
[23]   Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks [J].
Papari, Mohammad M. ;
Yousefi, Fakhri ;
Moghadasi, Jalil ;
Karimi, Hajir ;
Campo, Antonio .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (01) :44-52
[24]   Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions [J].
Sankar, N. ;
Mathew, Nithin ;
Sobhan, C. B. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2008, 35 (07) :867-872
[25]  
Suryanarayana C., 2013, XRAY DIFFRACTION PRA
[26]   Photothermal properties of graphene nanoplatelets nanofluid for low-temperature direct absorption solar collectors [J].
Vakili, M. ;
Hosseinalipour, S. M. ;
Delfani, S. ;
Khosrojerdi, S. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 152 :187-191
[27]   Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems [J].
Vakili, M. ;
Hosseinalipour, S. M. ;
Delfani, S. ;
Khosrojerdi, S. ;
Karami, M. .
SOLAR ENERGY, 2016, 131 :119-130
[28]   Using Artificial Neural Networks for Prediction of Global Solar Radiation in Tehran Considering Particulate Matter Air Pollution [J].
Vakili, Masoud ;
Sabbagh-Yazdi, Saeed-Reza ;
Kalhor, Koosha ;
Khosrojerdi, Soheila .
INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY -TMREES15, 2015, 74 :1205-1212
[29]   Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS [J].
Wusiman, Kuerbanjiang ;
Jeong, Hyomin ;
Tulugan, Kelimu ;
Afrianto, Handry ;
Chung, Hanshik .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 41 :28-33
[30]   Adjustable thermal conductivity in carbon nanotube nanofluids [J].
Xie, Huaqing ;
Chen, Lifei .
PHYSICS LETTERS A, 2009, 373 (21) :1861-1864