Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests

被引:354
作者
Pregitzer, Kurt S.
Burton, Andrew J.
Zak, Donald R.
Talhelm, Alan F.
机构
[1] Michigan Technol Univ, Ecosyst Sci Ctr, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA
[2] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA
关键词
carbon sink; global change; litter decomposition; microbial biomass; net primary productivity; soil;
D O I
10.1111/j.1365-2486.2007.01465.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
High levels of atmospheric nitrogen (N) deposition in Europe and North America were maintained throughout the 1990s, and global N deposition is expected to increase by a factor of 2.5 over the next century. Available soil N limits primary production in many terrestrial ecosystems, and some computer simulation models have predicted that increasing atmospheric N deposition may result in greater terrestrial carbon (C) storage in woody biomass. However, empirical evidence demonstrating widespread increases in woody biomass C storage due to atmospheric N deposition is uncommon. Increased C storage in soil organic matter due to chronic N inputs has rarely been reported and is often not considered in computer simulation models of N deposition effects. Since 1994, we have experimentally simulated chronic N deposition by adding 3 g N m(-2) yr(-1) to four different northern hardwood forests, which span a 500 km geographic gradient in Michigan. Each year we measured tree growth. In 2004, we also examined soil C content to a depth of 70 cm. When we compared the control treatment with the NO3- deposition treatment after a decade of experimentation, ecosystem C storage had significantly increased in both woody biomass (500 g C m(-2)) and surface soil (0-10 cm) organic matter (690 g C m(-2)). The increase in surface soil C storage was apparently driven by altered rates of organic matter decomposition, rather than an increase in detrital inputs to soil. Our results, for study locations stretching across hundreds of kilometers, support the hypothesis that chronic N deposition may increase C storage in northern forests, potentially contributing to a sink for anthropogenic CO2 in the northern Hemisphere.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 40 条
  • [1] [Anonymous], BELOWGROUND INTERACT
  • [2] Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States
    Bauer, GA
    Bazzaz, FA
    Minocha, R
    Long, S
    Magill, A
    Aber, J
    Berntson, GM
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2004, 196 (01) : 173 - 186
  • [3] Litter quality in a north European transect versus carbon storage potential
    Berg, B
    Meentemeyer, V
    [J]. PLANT AND SOIL, 2002, 242 (01) : 83 - 92
  • [4] Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests
    Boggs, JL
    McNulty, SG
    Gavazzi, MJ
    Myers, JM
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 2005, 35 (08): : 1901 - 1913
  • [5] BURTON AJ, 1991, FOREST SCI, V37, P1041
  • [6] Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests
    Burton, AJ
    Pregitzer, KS
    Hendrick, RL
    [J]. OECOLOGIA, 2000, 125 (03) : 389 - 399
  • [7] Simulated chronic NO3- deposition reduces soil respiration in northern hardwood forests
    Burton, AJ
    Pregitzer, KS
    Crawford, JN
    Zogg, GP
    Zak, DR
    [J]. GLOBAL CHANGE BIOLOGY, 2004, 10 (07) : 1080 - 1091
  • [8] USE OF MULTIVARIATE METHODS IN FOREST RESEARCH SITE SELECTION
    BURTON, AJ
    RAMM, CW
    PREGITZER, KS
    REED, DD
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH, 1991, 21 (11) : 1573 - 1580
  • [9] Redistributions of 15N highlight turnover and replenishment of mineral soil organic N as a long-term control on forest C balance
    Currie, WS
    Nadelhoffer, KJ
    Aber, JD
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2004, 196 (01) : 109 - 127
  • [10] Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests
    DeForest, JL
    Zak, DR
    Pregitzer, KS
    Burton, AJ
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2004, 68 (01) : 132 - 138