Influence of pore architectures of silk fibroin/collagen composite scaffolds on the regeneration of osteochondral defects in vivo

被引:63
作者
Feng, Xue [1 ]
Xu, Peifang [2 ]
Shen, Tao [1 ]
Zhang, Yihan [1 ]
Ye, Juan [2 ]
Gao, Changyou [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Coll Med, Dept Ophthalmol, Affiliated Hosp 2, Hangzhou 310009, Peoples R China
关键词
MESENCHYMAL STEM-CELLS; FOREIGN-BODY REACTION; ARTICULAR-CARTILAGE; POLY(LACTIDE-CO-GLYCOLIDE) SCAFFOLD; CHONDROGENIC DIFFERENTIATION; TISSUE-REPAIR; GIANT-CELLS; COLLAGEN; BIOMATERIALS; ORIENTATION;
D O I
10.1039/c9tb01558b
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The regeneration of osteochondral defects faces great challenges because of the limited self-regenerative capabilities of cartilage tissues. In situ inductive regeneration can be realized using bioactive scaffolds combined with endogenous reparative cells. Cell migration could be significantly facilitated by scaffolds with oriented channels. For this purpose, silk fibroin (SF) was composited with collagen (Col) to fabricate extracellular matrix (ECM)-mimetic SF/Col composite scaffolds with random pores, radially aligned pores or axially aligned pores by ice-templated assembly and temperature gradient-guided thermally-induced phase separation. Scanning electron microscopy (SEM) observation confirmed the random and aligned architectures in the respective scaffolds. The three kinds of SF/Col composite scaffolds exhibited a porous structure with a porosity of similar to 85%, an appropriate elastic modulus with mechanical anisotropy in the aligned scaffolds, and good biocompatibility. The oriented channels could improve in vivo cell migration and infiltration. During the tissue remodeling processes, the regeneration of osteochondral tissues particularly cartilage was obviously faster in the radially aligned scaffold group than in the other two groups. Nevertheless, satisfactory regeneration was achieved in the two aligned scaffold groups with hyaline cartilage formation at 18 weeks post-surgery, while a hybrid of hyaline cartilage and fibrocartilage was formed in the random scaffold group.
引用
收藏
页码:391 / 405
页数:15
相关论文
共 80 条
[1]   In vivo cellular reactions to different biomaterials-Physiological and pathological aspects and their consequences [J].
Al-Maawi, Sarah ;
Orlowska, Anna ;
Sader, Robert ;
Kirkpatrick, C. James ;
Ghanaati, Shahram .
SEMINARS IN IMMUNOLOGY, 2017, 29 :49-61
[2]   Foreign body reaction to biomaterials [J].
Anderson, James M. ;
Rodriguez, Analiz ;
Chang, David T. .
SEMINARS IN IMMUNOLOGY, 2008, 20 (02) :86-100
[3]   Toward in situ tissue engineering: chemokine-guided stem cell recruitment [J].
Andreas, Kristin ;
Sittinger, Michael ;
Ringe, Jochen .
TRENDS IN BIOTECHNOLOGY, 2014, 32 (09) :483-492
[4]   Engineering of gradient osteochondral tissue: From nature to lab [J].
Ansari, Sana ;
Khorshidi, Sajedeh ;
Karkhaneh, Akbar .
ACTA BIOMATERIALIA, 2019, 87 :41-54
[5]   Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design [J].
Arora, Aditya ;
Kothari, Anjaney ;
Katti, Dhirendra S. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2015, 51 :169-183
[6]   Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing [J].
Asuncion, Maria Christine Tankeh ;
Goh, James Cho-Hong ;
Toh, Siew-Lok .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 67 :646-656
[7]   Integrins [J].
Barczyk, Malgorzata ;
Carracedo, Sergio ;
Gullberg, Donald .
CELL AND TISSUE RESEARCH, 2010, 339 (01) :269-280
[8]   Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends [J].
Bhardwaj, Nandana ;
Kundu, Subhas C. .
BIOMATERIALS, 2012, 33 (10) :2848-2857
[9]   Pore Alignment in Gelatin Scaffolds Enhances Chondrogenic Differentiation of Infrapatellar Fat Pad Derived Mesenchymal Stromal Cells [J].
Bhattacharjee, Arijit ;
Katti, Dhirendra S. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (01) :114-125
[10]   Tissue engineering strategies to study cartilage development, degeneration and regeneration [J].
Bhattacharjee, Maumita ;
Coburn, Jeannine ;
Centola, Matteo ;
Murab, Sumit ;
Barbero, Andrea ;
Kaplan, David L. ;
Martin, Ivan ;
Ghosh, Sourabh .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 84 :107-122