Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

被引:6
|
作者
Shadgan, Babak [1 ,2 ]
Manouchehri, Neda [1 ]
So, Kitty [1 ]
Shortt, Katelyn [1 ]
Fong, Allan [1 ]
Streijger, Femke [1 ]
Macnab, Andrew [3 ,4 ]
Kwon, Brian K. [1 ,2 ]
机构
[1] Ctr Int Collaborat Repair Discoveries, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Orthopaed, Vancouver, BC, Canada
[3] Univ British Columbia, Fac Med, Vancouver, BC, Canada
[4] Stellenbosch Univ, Wallenberg Res Ctr, Stellenbosch Inst Adv Study, ZA-7600 Stellenbosch, South Africa
来源
OPTICAL DIAGNOSTICS AND SENSING XVIII: TOWARD POINT-OF-CARE DIAGNOSTICS | 2018年 / 10501卷
关键词
Near infrared spectroscopy; NIRS; Spinal cord injury; Cytochrome; Oxygenation; PaPO2; NEAR-INFRARED SPECTROSCOPY; CYTOCHROME-OXIDASE; OXIDATION;
D O I
10.1117/12.2286551
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custom-made near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, p<0.05) was observed following SCI, indicating progressive SC cellular damage at the injury site. Elevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Spinal Cord Stimulation After Spinal Cord Injury: Promising Multisystem Effects
    Donovan, Jayne
    Forrest, Gail
    Linsenmeyer, Todd
    Kirshblum, Steven
    CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS, 2021, 9 (01) : 23 - 31
  • [12] Acute Traumatic Spinal Cord Injury
    Taylor, Elizabeth C.
    Fitzpatrick, Casey E.
    Thompson, Stasia E.
    Justice, Stephanie Baker
    ADVANCED EMERGENCY NURSING JOURNAL, 2022, 44 (04) : 272 - 280
  • [13] Priapism in acute spinal cord injury
    N V Todd
    Spinal Cord, 2011, 49 : 1033 - 1035
  • [14] Priapism in acute spinal cord injury
    Todd, N. V.
    SPINAL CORD, 2011, 49 (10) : 1033 - 1035
  • [15] Spinal Cord Stimulation After Spinal Cord Injury: Promising Multisystem Effects
    Jayne Donovan
    Gail Forrest
    Todd Linsenmeyer
    Steven Kirshblum
    Current Physical Medicine and Rehabilitation Reports, 2021, 9 : 23 - 31
  • [16] Acute Traumatic Spinal Cord Injury
    Eli, Ilyas
    Lerner, David P.
    Ghogawala, Zoher
    NEUROLOGIC CLINICS, 2021, 39 (02) : 471 - 488
  • [17] Spinal cord stimulation for the restoration of bladder function after spinal cord injury
    Steadman, Casey J.
    Grill, Warren M.
    HEALTHCARE TECHNOLOGY LETTERS, 2020, 7 (03) : 87 - 92
  • [18] Hypothermia for Acute Spinal Cord Injury
    Vedantam, Aditya
    Levi, Allan D.
    NEUROSURGERY CLINICS OF NORTH AMERICA, 2021, 32 (03) : 377 - 387
  • [19] Acute treatment of spinal cord injury
    Philip G. Esce
    Stephen J. Haines
    Current Treatment Options in Neurology, 2000, 2 (6) : 517 - 524
  • [20] Charcot spinal disease after spinal cord injury
    Morita, Masahiro
    Miyauchi, Akira
    Okuda, Shinya
    Oda, Takenori
    Yamamoto, Tomio
    Iwasaki, Motoki
    JOURNAL OF NEUROSURGERY-SPINE, 2008, 9 (05) : 419 - 426