Face-regular bifaced polyhedra

被引:6
作者
Deza, M
Grishukhin, V
机构
[1] Ecole Normale Super, Liens, F-75230 Paris 05, France
[2] Russian Acad Sci, CEMI, Moscow, Russia
关键词
polyhedra; graphs; regularity; adjacency; fullerenes;
D O I
10.1016/S0378-3758(00)00287-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Call bifaced any k-valent polyhedron, whose faces are p(a) a-gons and p(b) b-gons only, where 3 less than or equal to a < b, 0 < p(a), 0 less than or equal to P-b. We consider the case b less than or equal to 2k/(k - 2) covering applications; so either k = 3 less than or equal to a < b <less than or equal to>6, or (k; a, b, p(a)) = (4; 3, 4, 8). Call such a polyhedron aR(i) (resp., bR(j)) if each of its a-gonal (b-gonal) faces is adjacent to exactly i a-gonal (resp., j b-gonal) faces. The preferable (i.e., with isolated pentagons) fullerenes are the case aR(o) for (k; a, b) = (3; 5, 6). We classify all a- or b-face-regular bifaced polyhedra, except aR(o) for (k; a, b) = (3;4, 6),(3; 5, 6), (4; 3,4) and aR(1) for (k; a, b) = (3; 5, 6),(4; 3,4). For example, we list all 13,6,4,10,26 polyhedra bR(j) for all five possible cases: k = 4; k = 3, b < 6; k = 3, b = 6, a = 3, 4, 5. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:175 / 195
页数:21
相关论文
共 20 条
  • [1] BAYER MM, 1993, HDB CONVEX GEOMETRY, VA, P485
  • [2] The almost simple cubical polytopes
    Blind, G
    Blind, R
    [J]. DISCRETE MATHEMATICS, 1998, 184 (1-3) : 25 - 48
  • [3] BRINKMANN G, 1998, COMMUNICATION
  • [4] Fullerenes and coordination polyhedra versus half-cube embeddings
    Deza, A
    Deza, M
    Grishukhin, V
    [J]. DISCRETE MATHEMATICS, 1998, 192 (1-3) : 41 - 80
  • [5] Deza M, 1999, ALGEBRAS AND COMBINATORICS, P189
  • [6] DEZA M, 1997, B I MATH ACAD SINICA, V25, P181
  • [7] DEZA M, 1999, GEN ALGEBRA DISCRETE, P47
  • [8] DILLENCOURT MB, 1996, E COMMUNICATION
  • [9] Fowler P.W., 2006, ATLAS FULLERENES
  • [10] SYSTEMATICS OF FULLERENES AND RELATED CLUSTERS
    FOWLER, PW
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 343 (1667): : 39 - 52