Heat conduction tuning by wave nature of phonons

被引:184
作者
Maire, Jeremie [1 ,2 ]
Anufriev, Roman [1 ]
Yanagisawa, Ryoto [1 ]
Ramiere, Aymeric [1 ,2 ]
Volz, Sebastian [3 ]
Nomura, Masahiro [1 ,4 ,5 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[2] Univ Tokyo, Lab Integrated Micro Mechatron Syst, Natl Ctr Sci Res, Inst Ind Sci, Tokyo 1538505, Japan
[3] Ecole Cent Paris, UPR CNRS 288, Lab Energet Mol & Macroscop, Combust, F-92295 Chatenay Malabry, France
[4] Univ Tokyo, Inst Nano Quantum Informat Elect, Tokyo 1538505, Japan
[5] Japan Sci & Technol Agcy, PRESTO, Saitama 3320012, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
THERMAL-CONDUCTIVITY; CRYSTALS; TRANSPORT; SCATTERING;
D O I
10.1126/sciadv.1700027
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The world communicates to our senses of vision, hearing, and touch in the language of waves, because light, sound, and even heat essentially consist of microscopic vibrations of different media. The wave nature of light and sound has been extensively investigated over the past century and is now widely used in modern technology. However, the wave nature of heat has been the subject of mostly theoretical studies because its experimental demonstration, let alone practical use, remains challenging due to its extremely short wavelengths. We show a possibility to use the wave nature of heat for thermal conductivity tuning via spatial short-range order in phononic crystal nanostructures. Our experimental and theoretical results suggest that interference of thermal phonons occurs in strictly periodic nanostructures and slows the propagation of heat. This finding expands the methodology of heat transfer engineering to the wave nature of heat.
引用
收藏
页数:6
相关论文
共 52 条
[1]   Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature [J].
Alaie, Seyedhamidreza ;
Goettler, Drew F. ;
Su, Mehmet ;
Leseman, Zayd C. ;
Reinke, Charles M. ;
El-Kady, Ihab .
NATURE COMMUNICATIONS, 2015, 6
[2]  
Anufriev R., 2015, PHYS REV B, V93
[3]   Heat guiding and focusing using ballistic phonon transport in phononic nanostructures [J].
Anufriev, Roman ;
Ramiere, Aymeric ;
Maire, Jeremie ;
Nomura, Masahiro .
NATURE COMMUNICATIONS, 2017, 8
[4]   Heat conduction engineering in pillar-based phononic crystals [J].
Anufriev, Roman ;
Nomura, Masahiro .
PHYSICAL REVIEW B, 2017, 95 (15)
[5]   Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types [J].
Anufriev, Roman ;
Nomura, Masahiro .
PHYSICAL REVIEW B, 2016, 93 (04)
[6]   Slow light in photonic crystals [J].
Baba, Toshihiko .
NATURE PHOTONICS, 2008, 2 (08) :465-473
[7]   Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well [J].
Balandin, A ;
Wang, KL .
PHYSICAL REVIEW B, 1998, 58 (03) :1544-1549
[8]   Minimizing the uncertainties associated with the measurement of thermal properties by the transient thermo-reflectance method [J].
Burzo, MG ;
Komarov, PL ;
Raad, PE .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2005, 28 (01) :39-44
[9]   Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes [J].
Cuffe, J. ;
Ristow, O. ;
Chavez, E. ;
Shchepetov, A. ;
Chapuis, P-O ;
Alzina, F. ;
Hettich, M. ;
Prunnila, M. ;
Ahopelto, J. ;
Dekorsy, T. ;
Sotomayor Torres, C. M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (09)
[10]   Nanophononic Metamaterial: Thermal Conductivity Reduction by Local Resonance [J].
Davis, Bruce L. ;
Hussein, Mahmoud I. .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)