In this paper, we consider higher-order Karush-Kuhn-Tucker optimality conditions in terms of radial derivatives for set-valued optimization with nonsolid ordering cones. First, we develop sum rules and chain rules in the form of equality for radial derivatives. Then, we investigate set-valued optimization including mixed constraints with both ordering cones in the objective and constraint spaces having possibly empty interior. We obtain necessary conditions for quasi-relative efficient solutions and sufficient conditions for Pareto efficient solutions. For the special case of weak efficient solutions, we receive even necessary and sufficient conditions. Our results are new or improve recent existing ones in the literature.