Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation

被引:17
作者
Godillon, P [1 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5669, Unite Math Pures & Appl, F-69364 Lyon 07, France
关键词
linear stability; Evans function; semi-linear relaxation;
D O I
10.1016/S0167-2789(00)00178-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Evans function theory, which has recently been applied to the study of linear stability of viscous shock profiles, is developed below for semi-linear relaxation. We study the Linear stability of shock profiles in the Lax, undercompressive and overcompressive cases. The results we obtain are similar to those found for viscous approximations by Gardner and Zumbrun [Commun. Pure Appl. Math. 51 (7) (1998) 797]. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:289 / 316
页数:28
相关论文
共 36 条
[21]  
LIU TP, 1991, SIAM PROC S, P105
[22]   HYPERBOLIC CONSERVATION-LAWS WITH RELAXATION [J].
LIU, TP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (01) :153-175
[23]  
LIU TP, 1993, IMA VOL MATH APPL, V52, P159
[24]  
LIU TP, 1990, IMA MATH APPL, V27, P139
[25]   STABLE VISCOSITY MATRICES FOR SYSTEMS OF CONSERVATION-LAWS [J].
MAJDA, A ;
PEGO, RL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (02) :229-262
[26]  
Mallet-Paret J., 1999, J DYN DIFFER EQU, V11, P1, DOI DOI 10.1023/A:1021889401235
[27]   A TOPOLOGICAL-DEGREE FOR ORBITS CONNECTING CRITICAL-POINTS OF AUTONOMOUS SYSTEMS [J].
MOCK, MS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 38 (02) :176-191
[28]  
NATALINI R, 1999, MONOGR SURV PURE APP, V99, P128
[29]  
SCHECTER S, 1991, SIAM PROC S, P142
[30]  
Serre D, 2000, ANN I H POINCARE-AN, V17, P169, DOI 10.1016/S0294-1449(99)00105-5