LARGE TIME ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO HIGHER ORDER NONLINEAR SCHRODINGER EQUATION

被引:0
作者
Juarez-Campos, Beatriz [1 ]
Naumkin, Pavel, I [2 ]
Ruiz-Paredes, Hector F. [1 ]
机构
[1] Inst Tecnol Morelia, Ave Tecnol 1500, Morelia 58120, Michoacan, Mexico
[2] Ctr Ciencias Matemat, UNAM Campus Morelia,AP 61-3 Xangari, Morelia 58089, Michoacan, Mexico
关键词
GLOBAL EXISTENCE; SCATTERING-THEORY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the higher-order nonlinear Schrodinger equation (0.1) i partial derivative(t)u + 1/2 partial derivative(2)(x)u = u(3,) t > 0, x is an element of R, u (0, x) = u(0) (x), x is an element of R. The aim of the present paper is prove the global existence of solutions to (0.1) if the initial data u(0) is an element of H-1 boolean AND H-0,H-1. Also we find the large time asymptotics of solutions.
引用
收藏
页码:509 / 529
页数:21
相关论文
共 29 条
[1]  
[Anonymous], 1989, ENCY MATH SCI
[2]   CLASS OF BOUNDED PSEUDODIFFERENTIAL OPERATORS [J].
CALDERON, AP ;
VAILLANCOURT, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1972, 69 (05) :1185-+
[3]  
Cazenave T., 2003, COURANT LECT NOTES M
[4]   COMPACTNESS OF COMMUTATORS OF MULTIPLICATIONS AND CONVOLUTIONS, AND BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS [J].
CORDES, HO .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 18 (02) :115-131
[5]   NOTE ON A MODIFICATION TO THE NON-LINEAR SCHRODINGER-EQUATION FOR APPLICATION TO DEEP-WATER WAVES [J].
DYSTHE, KB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 369 (1736) :105-114
[6]  
Fukumoto Y, 2001, FLUID MEC A, V59, P211
[7]   Global existence of solutions for a fourth-order nonlinear Schrodinger equation [J].
Guo, Cuihua ;
Cui, Shangbin .
APPLIED MATHEMATICS LETTERS, 2006, 19 (08) :706-711
[8]   Wellposedness for the fourth order nonlinear Schrodinger equations [J].
Hao, Chengchun ;
Hsiao, Ling ;
Wang, Baoxiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) :246-265
[9]   GLOBAL EXISTENCE OF SMALL SOLUTIONS TO QUADRATIC NONLINEAR SCHRODINGER-EQUATIONS [J].
HAYASHI, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (7-8) :1109-1124
[10]  
HAYASHI N, 1988, ANN I H POINCARE-PHY, V48, P17