Lagrange stability and asymptotic periods

被引:2
作者
Gryszka, Karol [1 ]
机构
[1] Jagiellonian Univ, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Lagrange stability; Asymptotic period; omega-Limit set; Proper metric space; SYSTEMS;
D O I
10.1016/j.topol.2016.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we describe selected topological and dynamical properties of asymptotically periodic motions in continuous dynamical systems (flows). The main result is to show Lagrange stability (i.e. the closure of positive orbit is compact) of such motion with the aid of topological properties of limit sets. Two sufficient conditions for this kind of stability are provided: the value of asymptotic period (our approach to this notion differs from the usual one) and proper metric space property. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:168 / 174
页数:7
相关论文
共 4 条
[1]   TOPOLOGICAL DYNAMICS OF CONTROL-SYSTEMS - STABILITY AND ATTRACTION [J].
BACCIOTTI, A ;
KALOUPTSIDIS, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (06) :547-565
[2]  
Bhatia N. P., 1970, Classics in Mathematics
[3]   ASYMPTOTIC PERIOD IN DYNAMICAL SYSTEMS IN METRIC SPACES [J].
Gryszka, Karol .
COLLOQUIUM MATHEMATICUM, 2015, 139 (02) :245-257
[4]  
Gu Y.H., 1995, J KOREA SOC MATH E B, V2, P149